Trở lại Ví dụ 4. Tính xác suất để:
a) Sơn lấy được bút bi xanh và Tùng lấy được bút bi đen;
b) Hai chiếc bút lấy ra có cùng màu.
Trong hộp có một số bút bi xanh và một số bút bi đỏ. Lấy ngẫu nhiên 1 bút từ hộp. Xem màu rồi trả lại. Lặp lại hoạt động trên 60 lần, ta được kết quả như sau
Loại bút | Bút xanh | Bút đỏ |
Số lần | 48 | 12 |
a, Tính xác suất thực nghiệm của sự kiện lấy được bút xanh
b, Em hãy dự đoán xem trong hộp loại bút nào nhiều hơn
`a)` Xác xuất thực nghiệm của sự kiện lấy được bút xanh là:
`48/60=4/5`
`b)` Dự đoán: loại bút xanh nhiều hơn.
Vì số lần bút lấy được bút xanh nhiều hơn gấp `4` lần số lần lấy được bút đỏ.
Một chiếc hộp đựng 6 cái bút màu xanh, 6 cái bút màu đen, 5 cái bút màu tím và 3 cái bút màu đỏ được đánh số từ 1 đến 20. Lấy ngẫu nhiên ra 4 cái bút. Tính xác suất để lấy được ít nhất 2 bút cùng màu.
A. 311 323
B. 123 323
C. 287 323
D. 237 323
Một hộp đựng 8 viên bi màu xanh và 6 viên bi màu đỏ, có cùng kích thước và khối lượng. Bạn Sơn lấy ngẫu nhiên một viên bi từ hộp (lấy xong không trả lại vào hộp). Tiếp đó đến lượt bạn Tùng lấy ngẫu nhiên một viên bi từ hộp đó. Tính xác suất để bạn Tùng lấy được viên bi màu xanh.
Ta có số cách chọn một viên bi trong hộp là 14.13 = 182
A: “Sơn lấy màu xanh, Tùng lấy màu xanh”
Công đoạn 1: Sơn lấy màu xanh có 8 cách
Công đoạn 2: Tùng lấy màu xanh có 7 cách vì Sơn lấy xong không trả lại vào hộp.
Theo quy tắc nhân, tập A có 8.7 = 56 (phần tử)
\( \Rightarrow P\left( A \right) = \frac{{56}}{{182}} = \frac{4}{{13}}\)
B: “Sơn lấy màu đỏ, Tùng lấy màu xanh”
Công đoạn 1: Sơn lấy màu đỏ có 6 cách
Công đoạn 2: Tùng lấy màu xanh có 8 cách
Theo quy tắc nhân, tập B có 6.8 = 48 (phần tử)
\( \Rightarrow P\left( B \right) = \frac{{48}}{{182}} = \frac{{24}}{{91}}\)
C: “Bạn Tùng lấy được viên bi màu xanh” nên \(C = A \cup B\)
\( \Rightarrow P\left( C \right) = P\left( A \right) + P\left( B \right) = \frac{4}{{13}} + \frac{{24}}{{91}} = \frac{4}{7}\)
Vậy xác suất để bạn Tùng lấy được viên bi màu xanh là \(\frac{4}{7}.\)
Trong hộp có một số bút bi xanh và một số bút bi đỏ. Lấy ngẫu nhiên 1 bút từ hộp. xem
màu rồi trả lại. Lặp lại hoạt động trên 60 lần, ta được kết quả như sau:
Loại bút Bút xanh Bút đỏ
Số lần 48 12
a) Tính xác suất thực nghiệm của sự kiện lấy được bút xanh.
b) Em hãy dự đoán xem trong hộp loại bút nào nhiều hơn.
Có hai túi đựng các viên bị có cùng kích thước và khối lượng. Túi I có 3 viên bi màu xanh và 7 viên bị màu đỏ. Túi II có 10 viên bi màu xanh và 6 viên bi màu đỏ. Từ mỗi túi, lấy ngẫu nhiên ra một viên bị. Tính xác suất để:
a) Hai viên bi được lấy có cùng màu xanh;
b) Hai viên bi được lấy có cùng màu đỏ;
c) Hai viên bi được lấy có cùng màu;
d) Hai viên bi được lấy không cùng màu.
Vì hai túi là khác nhau nên biến cố lấy một viên bi mỗi túi là độc lập.
Gọi biến cố A: “Hai viên bi được lấy có cùng màu xanh”, biến cố B: “Hai viên bi được lấy có cùng màu đỏ”, biến cố C: “Hai viên bi được lấy có cùng màu”
a) Xác suất lấy được viên bi màu xanh từ túi I là \(\frac{3}{{10}}\)
Xác suất lấy được viên bi màu xanh từ túi II là \(\frac{{10}}{{16}} = \frac{5}{8}\)
Xác suất lấy được hai viên bi cùng màu xanh là \(\frac{3}{{10}}.\frac{5}{8} = \frac{3}{{16}}\)
b) Xác suất lấy được viên bi màu đỏ từ túi I là \(\frac{7}{{10}}\)
Xác suất lấy được viên bi màu đỏ từ túi II là \(\frac{6}{{16}} = \frac{3}{8}\)
Xác suất lấy được hai viên bi cùng màu đỏ là \(\frac{7}{{10}}.\frac{3}{8} = \frac{{21}}{{80}}\)
c) Ta có \(C = A \cup B\) mà A và B xung khắc nên
\(P\left( C \right) = P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) = \frac{3}{{16}} + \frac{{21}}{{80}} = \frac{9}{{20}}\)
Vậy xác suất để hai viên bi được lấy có cùng màu là \(\frac{9}{{20}}.\)
d) Gọi biến cố D: “Hai viên bi được lấy không cùng màu”
Khi đó \(\overline D = C\)
\( \Rightarrow P\left( D \right) = 1 - P\left( {\overline D } \right) = 1 - P\left( C \right) = 1 - \frac{9}{{20}} = \frac{{11}}{{20}}\)
Vậy xác suất để hai viên bi được lấy không cùng màu là \(\frac{{11}}{{20}}.\)
một hộp đựng 18 viên bi trong đó có 8 bi trắng và 6 bi vàng, 4 bi xanh. Lấy ngẫu nhiên3 viên bi. Tính xác suất để:
a. 3 viên bi cùng màu
b. 3 viên bi khác màu
a) Không gian mẫu : \(\left|\Omega\right|=C^3_{18}=816\)
Biến cố A" 3 bi cùng màu"
Các trường hợp thuận lợi cho biến cố A "
TH1: 3 bi trắng \(C^3_8\)
TH2: 3 bi vàng \(C^3_6\)
TH3: 3 bi xanh \(C^3_4\)
=> \(\left|\Omega_A\right|=C^3_8+C^3_6+C^3_4=80\)
=> \(P\left(A\right)=\dfrac{80}{816}=\dfrac{5}{51}\)
b) Biến cố B" 3 bi khác màu"
Chọn mỗi màu 1 viên
Màu trắng 8 cách
Màu vàng 6 cách
Màu xanh 4 cách
=> \(\left|\Omega_B\right|=8\cdot6\cdot4=192\)
=> \(P\left(B\right)=\dfrac{\left|\Omega_B\right|}{\left|\Omega\right|}=\dfrac{192}{816}=\dfrac{4}{17}\)
một hợp có 2 bi xanh và 4 bi đỏ. lấy 1 viên bi liên tiếp 3 lần và mỗi lần đều trả viên bi đã lấy vào hộp
a) tính xác suất để được 3 bi xanh
b) tính xác suất để được 3 bi đỏ
có 2 hộp đựng bi. Hộp 1 có 7bi xanh, 6 bi đen, hộp 2 có 5bi xanh và 8 bi đen. Chọn ngẫu nhiên 4bi ( mỗi hộp 2 viên). Tính xác suất để lấy được hai viên cùng màu.
\(n\left(\Omega\right)=C^2_{13}\cdot C^2_{13}\)
\(n\left(A\right)=C^2_7\cdot C^2_{13}+C^2_6\cdot C^2_{13}+C^2_5\cdot C^2_{13}+C^2_8\cdot C^2_{13}\)
=>P(A)=5772/6084=37/39
Ba cây bút đỏ, 12 cây bút xanh, 5 cây bút vàng. Tính xác suất để lấy được 4 cây bút có đủ 3 màu?
Lấy 4 cây bất kì: \(C_{20}^4\) cách
Lấy 4 cây chỉ có 1 màu: \(C_{12}^4+C_5^4\) cách
Lấy 4 cây có ít hơn 3 màu: \(C_{15}^4+C_8^4+C_{17}^4\)
\(\Rightarrow\) Có \(C_{20}^4+C_{12}^4+C_5^4-\left(C_{15}^4+C_8^4+C_{17}^4\right)\) cách lấy 4 cây có đủ 3 màu
Hoặc cách khác là chọn trực tiếp (vì bài này ít trường hợp): có 3 trường hợp là 2 đỏ 1 vàng 1 xanh, 1 đỏ 2 vàng 1 xanh, 1 đỏ 1 vàng 2 xanh nên có: \(C_3^2.12.5+3.C_{12}^2.5+3.12.C_5^2\) cách
hùng có một số bút bi, mỗi loại màu xanh và mầu đen, biết rằng số bút đen ít hơi số bút bi xanh là 7 chiếc và gộp cả hai loại bút lại cùng chứa đủ 1 chục chiếc. Hói có bao nhiêu bút bi xanh.
Bạn ơi có vẻ bài này sai đề đó bạn ạ, ko tính dc đâu nha
Bằng 7 đó bạn___Vì chỉ có 3+7 là cách nhau 7 chiếc thôi