Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rhider
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Hồng Phúc
27 tháng 8 2021 lúc 23:44

Giả sử \(c\le1\).

Khi đó: \(ab+bc+ca-abc=ab\left(1-c\right)+c\left(a+b\right)\ge0\)

\(\Rightarrow ab+bc+ca\ge abc\left(1\right)\)

Đẳng thức xảy ra chẳng hạn với \(a=2,b=c=0\).

Theo giả thiết:

\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\)

\(\Leftrightarrow ab\left(c+2\right)\le4-c^2\)

\(\Leftrightarrow ab\le2-c\)

Trong ba số \(\left(a-1\right),\left(b-1\right),\left(c-1\right)\) luôn có hai số cùng dấu.

Không mất tính tổng quát, giả sử \(\left(a-1\right)\left(b-1\right)\ge0\).

\(\Rightarrow ab-a-b+1\ge0\)

\(\Leftrightarrow ab\ge a+b-1\)

\(\Leftrightarrow abc\ge ca+bc-c\)

\(\Rightarrow abc+2\ge ca+bc+2-c\ge ab+bc+ca\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) Bất đẳng thức được chứng minh.

 

l҉o҉n҉g҉ d҉z҉
Xem chi tiết
nguyentrungduc
2 tháng 5 2021 lúc 20:29

132-79=

Khách vãng lai đã xóa
Phan Nghĩa
2 tháng 5 2021 lúc 20:34

ta có :

\(\frac{a^3+b^3}{a^2+ab+b^2}=\frac{2a^3}{a^2+ab+b^2}+\frac{b^3-a^3}{a^2+ab+b^2}=\frac{2a^3}{a^2+ab+b^3}+b-a\)

tương tự rồi cộng theo vế : 

\(LHS\ge2\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)

áp dụng bđt cô si

 \(\frac{a^3}{a^2+ab+b^2}+\frac{a^2+ab+b^2}{9}+\frac{1}{3}\ge\frac{3a}{3}=a\)

tương tự rồi cộng theo vế 

\(2\left(\frac{a^3}{a^2+ab+b^2}+...\right)\ge a+b+c-1-\frac{2\left(a^2+b^2+c^2+ab+bc+ca\right)}{9}\)

\(\ge\frac{2\left(9-a^2-b^2-c^2-ab-bc-ca\right)}{9}\)

đến đây chịu :)))))

Khách vãng lai đã xóa
Lê Tài Bảo Châu
3 tháng 5 2021 lúc 0:44

\(\frac{a^3+b^3}{a^2+ab+b^2}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)

Ta có BĐT phụ: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)( cái này nhân chéo lên tự cm nha )

\(\Rightarrow\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\)

CMTT: \(\frac{b^3+c^3}{b^2+bc+c^2}\ge\frac{1}{3}\left(b+c\right);\frac{c^3+a^3}{c^2+ca+a^2}\ge\frac{1}{3}\left(c+a\right)\)

\(\Rightarrow VT\ge\frac{2}{3}\left(a+b+c\right)\ge\frac{2}{3}.3\sqrt[3]{abc}=2\left(đpcm\right)\)

Khách vãng lai đã xóa
Đạt TL
Xem chi tiết
zZz Cool Kid_new zZz
16 tháng 7 2020 lúc 20:52

Mình xài p,q,r nhé :))

Ta có:

\(a^3+b^3+c^3=p^3-3pq+3r=1-3q+3r\)

\(a^4+b^4+c^4=1-4q+2q^2+4r\)

Khi đó BĐT tương đương với:

\(\frac{1}{8}+2q^2+4r-4q+1\ge1-3q+3r\)

\(\Leftrightarrow2q^2-q+\frac{1}{8}+r\ge0\)

\(\Leftrightarrow2\left(q-\frac{1}{4}\right)+r\ge0\) ( đúng )

Khách vãng lai đã xóa
tth_new
21 tháng 7 2020 lúc 7:43

\(a^4+b^4+c^4+\frac{1}{8}\left(a+b+c\right)^4\ge\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)

Khúc đầu có gì đâu nhỉ: \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=p^3-3\left[\left(a+b+c\right)\left(ab+bc+ca\right)-abc\right]\)

\(=p^3-3pq+3r\)

--------------------------------------

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\right]^2-2\left[\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\right]\)

\(=\left(p^2-2q\right)^2-2\left(q^2-2pr\right)\)

\(=p^4-4p^2q+2q^2+4pr\)

Xem thêm các đẳng thức thông dụng tại: https://bit.ly/3hllKCq

Khách vãng lai đã xóa
Đạt TL
17 tháng 7 2020 lúc 12:39

Đọc xong lú luôn @_@. Khúc đầu chả hiểu gì hết 

mà thôi cũng phải tk ông a 1 cái vì có tâm với nghề

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Akai Haruma
13 tháng 4 2021 lúc 14:27

Lời giải:

Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.

Áp dụng vào bài:

$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$

$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$

Tương tự:

$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$

Cộng theo vế:

$\Rightarrow \text{VT}\leq a+b+c=3$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

Rhider
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Trên con đường thành côn...
27 tháng 8 2021 lúc 21:55

undefined

Ngô Thành Chung
27 tháng 8 2021 lúc 22:00

Elki Syrah
Xem chi tiết
Lê Song Phương
1 tháng 6 2023 lúc 9:00

Ta có \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\) 

\(=\sqrt{2a\left(a+b+c\right)+\dfrac{b^2-2bc+c^2}{2}}\)

\(=\sqrt{\dfrac{4a^2+b^2+c^2+4ab+4ac-2bc}{2}}\)

\(=\sqrt{\dfrac{\left(2a+b+c\right)^2-4bc}{2}}\)

\(\le\sqrt{\dfrac{\left(2a+b+c\right)^2}{2}}\)

\(=\dfrac{2a+b+c}{\sqrt{2}}\).

Vậy \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\le\dfrac{2a+b+c}{\sqrt{2}}\). Lập 2 BĐT tương tự rồi cộng vế, ta được \(VT\le\dfrac{2a+b+c+2b+c+a+2c+a+b}{\sqrt{2}}\)

\(=\dfrac{4\left(a+b+c\right)}{\sqrt{2}}\) \(=\dfrac{4.1011}{\sqrt{2}}\) \(=2022\sqrt{2}\)

ĐTXR \(\Leftrightarrow\) \(\left\{{}\begin{matrix}ab=0\\bc=0\\ca=0\\a+b+c=1011\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(1011;0;0\right)\) hoặc các hoán vị. Vậy ta có đpcm.

ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 12 2021 lúc 17:39

TK: \(a^2+b^2+c^2+abc=4\Leftrightarrow a^2+abc+b^2+c^2-4=0\)

Coi đây là PT bậc 2 ẩn a

\(\Leftrightarrow\Delta=b^2c^2-4b^2-4c^2+16=\left(4-b^2\right)\left(4-c^2\right)\\ \Leftrightarrow a=\dfrac{-bc+\sqrt{\left(4-b^2\right)\left(4-c^2\right)}}{2}\le\dfrac{-bc+\dfrac{4-b^2+4-c^2}{2}}{2}=\dfrac{8-\left(b+c\right)^2}{4}\\ \Leftrightarrow a+b+c\le\dfrac{8-\left(b+c\right)^2}{4}+b+c=\dfrac{8-\left(b+c\right)^2+4\left(b+c\right)}{4}=\dfrac{12-\left(b+c-2\right)^2}{4}\le3\)