Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Yến
Xem chi tiết
santa
29 tháng 12 2020 lúc 12:53

A= x2+2y2-2xy-2x-2y+1015

A = x2 - 2xy - 2x + y2 + 2y + 1 + y2 - 4y + 4 + 1010 

A = [x2 - 2x(y + 1) + (y+1)2 ]  + (y-2)2 + 1010

A = ( x - y - 1)2 + (y-2)2 + 1010 \(\ge1010\forall x,y\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy MinA = 1010 <=> \(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

hoangtuvi
Xem chi tiết
Lấp La Lấp Lánh
11 tháng 9 2021 lúc 9:28

\(Q=x^2+2y^2+2z^2+2xy-2yz-2xz-2y+4z+5=\left[\left(x^2+2xy+y^2\right)-2z\left(x+y\right)+z^2\right]+\left(y^2-2y+1\right)+\left(z^2+4z+4\right)=\left(x+y-z\right)^2+\left(y-1\right)^2+\left(z+2\right)^2\ge0\)

\(minQ=0\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-3\\y=1\\z=-2\end{matrix}\right.\)

Hải Đức
11 tháng 9 2021 lúc 9:52

`Q=x^2+2y^2+2z^2+2xy-2yz-2xz-2y+4z+5`

`Q=(x^2+y^2-z^2+2xy-2yz-2xz)+(y^2-2y+1)+(z^2+4z+4)`

`Q=(x+y-z)^2+(y-1)^2+(z+2)^2`

Ta thấy :

`(x+y-z)^2>=0`

`(y-1)^2>=0`

`(z+2)^2>=0`

`=>(x+y-z)^2+(y-1)^2+(z+2)^2>=0`

Dấu = xảy ra 

`<=>` $\begin{cases}x+y-z=0\\y-1=0\\z+2=0\end{cases}$

`<=>` $\begin{cases}x=-3\\y=1\\z=-2\end{cases}$

Góc nhỏ tâm hồn
Xem chi tiết
Góc nhỏ tâm hồn
23 tháng 11 2017 lúc 19:37

giúp mình với

Nguyễn Trung Kiên
26 tháng 9 2020 lúc 16:36

XIN LỖI ! MÌNH KHONG BIẾT

Khách vãng lai đã xóa
Phạm Nam Khôi
Xem chi tiết

a: \(P=x^2+y^2-6x-2y+17\)

\(=x^2-6x+9+y^2-2y+1+7\)

\(=\left(x-3\right)^2+\left(y-1\right)^2+7\ge7\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-1=0

=>x=3 và y=1

b: \(Q=x^2+xy+y^2-3x-3y+999\)

\(=x^2+x\left(y-3\right)+y^2-3y+999\)

\(=x^2+2\cdot x\cdot\left(\frac12y-\frac32\right)+\left(\frac12y-\frac32\right)^2+y^2-3y-\left(\frac12y-\frac32\right)^2+999\)

\(=\left(x+\frac12y-\frac32\right)^2+y^2-3y-\left(\frac14y^2-\frac32y+\frac94\right)+999\)

\(=\left(x+\frac12y-\frac32\right)^2+\frac34y^2-\frac32y-\frac94+999\)

\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y^2-2y-3\right)+999\)

\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y^2-2y+1-4\right)+999\)

\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y-1\right)^2+996\ge996\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}y-1=0\\ x+\frac12y-\frac32=0\end{cases}\Rightarrow\begin{cases}y=1\\ x=-\frac12y+\frac32=-\frac12+\frac32=\frac22=1\end{cases}\)

c: \(R=2x^2+2xy_{}+y^2-2x+2y+15\)

\(=x^2-4x+4+x^2+2xy+y^2+2x+2y+11\)

\(=\left(x-2\right)^2+x^2+2xy+y^2+2x+2y+1+10\)

\(=\left(x-2\right)^2+\left(x+y+1\right)^2+10\ge10\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}x-2=0\\ x+y+1=0\end{cases}\Rightarrow\begin{cases}x=2\\ y=-x-1=-2-1=-3\end{cases}\)

d: \(S=x^2+26y^2-10xy+14x-76y+59\)

\(=x^2-10xy+25y^2+14x-70y+y^2-6y+59\)

\(=\left(x-5y\right)^2+14\left(x-5y\right)+49+y^2-6y+9+1\)

\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}y-3=0\\ x-5y+7=0\end{cases}\Rightarrow\begin{cases}y=3\\ x=5y-7=5\cdot3-7=15-7=8\end{cases}\)

e: \(T=x^2-4xy+5y^2+10x-22y+28\)

\(=x^2-4xy+4y^2+10x-20y+y^2-2y+28\)

\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+y^2-2y+1+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}y-1=0\\ x-2y+5=0\end{cases}\Rightarrow\begin{cases}y=1\\ x=2y-5=2\cdot1-5=2-5=-3\end{cases}\)


Lan Anh Vũ Hoàng
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 11 2021 lúc 15:17

Bạn nên sửa lại đề là tìm GTNN

\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+y^2+4y+4+15\\ A=\left(x-y+1\right)^2+\left(y+2\right)^2+15\ge15\\ A_{min}=15\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)

Vậy GTNN của A là 15

Hũ Thối Đậu
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 5 2022 lúc 9:30

\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+y^2-8y+16-17\\ A=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge17\)

Vậy \(A_{min}=17\leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 7 2019 lúc 1:53

A   =   x 2   +   2 y 2   –   2 x y   +   2 x   –   10 y     ⇔   A   =   x 2   +   y 2   +   1   –   2 x y   +   2 x   –   2 y   +   y 2   –   8 y   +   16   –   17     ⇔   A   =   ( x 2   +   y 2   +   12   –   2 . x . y   +   2 . x . 1   –   2 . y . 1 )   +   ( y 2   –   2 . 4 . y   +   4 2 )   –   17     ⇔   A   =   ( x   –   y   +   1 ) 2   +   ( y   –   4 ) 2   –   17

Vì  với mọi x; y nên A ≥ -17 với mọi x; y

=> A = -17 

⇔ x − y + 1 = 0 y − 4 = 0 ⇔ x = y − 1 y = 4 ⇔ x = 3 y = 4

Vậy A đạt giá trị nhỏ nhất là A = -17 tại   x = 3 y = 4

Đáp án cần chọn là: B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 3 2019 lúc 10:57

A   =   x 2   +   2 y 2   –   2 x y   +   2 x   –   10 y     ⇔   A   =   x 2   +   y 2   +   1   –   2 x y   +   2 x   –   2 y   +   y 2   –   8 y   +   16   –   17     ⇔   A   =   ( x 2   +   y 2   +   1 2   –   2 . x . y   +   2 . x . 1   –   2 . y . 1 )   +   ( y 2   –   2 . 4 . y   +   4 2 )   –   17     ⇔   A   =   ( x   –   y   +   1 ) 2   +   ( y   –   4 ) 2   –   17

 

Vì x - y + 1 2 ≥ 0 y - 4 2 ≥ 0  với mọi x, y nên A ≥ -17 với mọi x, y

=> A = -17 ó x - y + 1 = 0 y - 4 = 0 ó x = y - 1 y = 4 ó x = 3 y = 4  

Vậy A đạt giá trị nhỏ nhất là A = -17 tại   x = 3 y = 4

Đáp án cần chọn là: C

nmfuiyu
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 1 2022 lúc 14:05

\(A=\left[\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1\right]+\left(y^2-8y+16\right)-17\\ A=\left(x-y+1\right)^2+\left(y-4\right)^2-17\ge-17\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y-1=3\\y=4\end{matrix}\right.\)