Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NNKLynn
Xem chi tiết
HaNa
28 tháng 5 2023 lúc 12:15

Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=8\end{matrix}\right.\)

Theo đề:

\(B=\dfrac{x_1\sqrt{x_1}-x_2\sqrt{x_2}}{x_1-x_2}=\dfrac{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(x_1+\sqrt{x_1x_2}+x_2\right)}{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)}\left(x_1,x_2\ge0\right)\)

\(=\dfrac{6+\sqrt{8}}{\sqrt{x_1}+\sqrt{x_2}}\)

Tính: \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=6+2\sqrt{8}=6+4\sqrt{2}=\left(\sqrt{4}+\sqrt{2}\right)^2\)

\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=\sqrt{4}+\sqrt{2}\) (thỏa mãn \(x_1,x_2\ge0\))

Khi đó: \(P=\dfrac{6+\sqrt{8}}{\sqrt{4}+\sqrt{2}}=4-\sqrt{2}\)

Anh Quynh
Xem chi tiết
scotty
15 tháng 2 2022 lúc 15:05

Ptrình :  \(x^2-7x+10=0\)

Ta có : \(\Delta=\left(-7\right)^2-4.1.10=9>0\)

=> Phương trình có 2 nghiệm phân biệt \(x1\) và \(x2\)

\(x1=\dfrac{-\left(-7\right)+\sqrt{\Delta}}{2.1}=\dfrac{7+\sqrt{9}}{2}=5\)

\(x2=\dfrac{-\left(-7\right)-\sqrt{\Delta}}{2.1}=\dfrac{7-\sqrt{9}}{2}=2\)

Vậy :

A = \(x_1^2+x_2^2+3x_1x_2=5^2+2^2+3.5.2=59\)  

B = .................

.... (có x1 và x2 rồi thik thay vào lak tính đc, cái này bn tự tính nha)

Lương Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2023 lúc 22:25

(căn x1+căn x2)^2=x1+x2+2*căn x1x2

=12+2*căn 4=16

=>căn x1+căn x2=4

\(T=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{4}=\dfrac{12^2-2\cdot4}{4}=34\)

NNKLynn
Xem chi tiết
Akai Haruma
4 tháng 5 2023 lúc 13:46

Lời giải:

Theo định lý Viet:

$x_1+x_2=19$

$x_1x_2=9$

Khi đó:
\(x_1\sqrt{x_1}+x_2\sqrt{x_2}=(\sqrt{x_1})^3+(\sqrt{x_2})^3=(\sqrt{x_1}+\sqrt{x_2})(x_1-\sqrt{x_1x_2}+x_2)\)

\(=(\sqrt{x_1}+\sqrt{x_2})(19-\sqrt{9})=16(\sqrt{x_1}+\sqrt{x_2})\)

\(=16\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=16\sqrt{19+2\sqrt{9}}=80\)

\(x_1^2+x_2^2=(x_1+x_2)^2-2x_1x_2=19^2-2.9=343\)

$\Rightarrow P=\frac{80}{343}$

7hujtrh
Xem chi tiết

\(x^2-4x+3=0\)

Theo vi-et, ta có: \(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4;x_1x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Đặt \(A=\sqrt{x_1}+\sqrt{x_2}\)

=>\(A^2=x_1+x_2+2\sqrt{x_1x_2}\)

=>\(A^2=4+2\cdot\sqrt{3}\)

=>\(A=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

Chanhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2023 lúc 17:44

loading...  

trần minh khôi
Xem chi tiết
khoa đặng
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 8 2021 lúc 15:30

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=-5\end{matrix}\right.\)

\(D=5-\dfrac{x_2}{x_1}-\dfrac{x_1}{x_2}+3=8-\dfrac{x_1^2+x_2^2}{x_1x_2}=8-\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=8-\dfrac{\left(-4\right)^2-10}{5}=...\)

Lương Ngọc Anh
Xem chi tiết
Gia Huy
2 tháng 7 2023 lúc 21:34

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{1}{1}=1\\x_1x_2=\dfrac{c}{a}=-\dfrac{3}{1}=-3\end{matrix}\right.\)

a

\(A=x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2=1^2-2.\left(-3\right)=1+6=7\)

b

\(B=x_1^2x_2+x_1x_2^2=x_1x_2\left(x_1+x_2\right)=\left(-3\right).1=-3\)

c

\(C=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_2}{x_1x_2}+\dfrac{x_1}{x_1x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{-3}=-\dfrac{1}{3}\)

d

\(D=\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}=\dfrac{x_2^2}{x_1x_2}+\dfrac{x_1^2}{x_1x_2}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\dfrac{1^2-2.\left(-3\right)}{-3}=\dfrac{1+6}{-3}=\dfrac{7}{-3}=-\dfrac{3}{7}\)

Uyên
Xem chi tiết
Nguyễn Ngọc Huy Toàn
7 tháng 4 2022 lúc 18:32

1. Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{4}{3}\\x_1.x_2=\dfrac{1}{3}\end{matrix}\right.\)

\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)

   \(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_1-x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

  \(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}=\dfrac{\dfrac{22}{9}}{\dfrac{8}{3}}=\dfrac{11}{12}\)

YangSu
7 tháng 4 2022 lúc 18:34

\(1,3x^2+4x+1=0\)

Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}=-\dfrac{4}{3}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{1}{3}\end{matrix}\right.\)

Ta có :

\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)

\(=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)

\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}\)

\(=\dfrac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{S^2-2P-S}{P-S+1}\)

\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}\)

\(=\dfrac{11}{12}\)

Vậy \(C=\dfrac{11}{12}\)

YangSu
7 tháng 4 2022 lúc 18:41

\(3,3x^2-7x-1=0\)

Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{7}{3}\\P=x_1x_2=\dfrac{c}{a}=-\dfrac{1}{3}\end{matrix}\right.\)

Ta có :

\(B=\dfrac{2x_2^2}{x_1+x_2}+2x_1\)

\(=\dfrac{2x_2^2+2x_1\left(x_1+x_2\right)}{x_1+x_2}\)

\(=\dfrac{2x_2^2+2x_1^2+2x_1x_2}{x_1+x_2}\)

\(=\dfrac{2\left(x_1^2+x_2^2\right)+2x_1x_2}{x_1+x_2}\)

\(=\dfrac{2\left(S^2-2P\right)+2P}{S}\)

\(=\dfrac{2\left(\dfrac{7}{3}^2-2\left(-\dfrac{1}{3}\right)\right)+2\left(-\dfrac{1}{3}\right)}{\dfrac{7}{3}}\)

\(=\dfrac{104}{21}\)

Vậy \(B=\dfrac{104}{21}\)