Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duong Thi Nhuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2022 lúc 13:58

undefined

Duong Thi Nhuong
Xem chi tiết
Phương An
8 tháng 9 2016 lúc 9:34

\(\left[\left(1+\frac{1}{x^2}\right)\div\left(1+2x+x^2\right)+\frac{2}{\left(x+1\right)^3}\times\left(1+\frac{1}{x}\right)\right]\div\frac{x-1}{x^3}\)

\(=\left[\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{2}{\left(x+1\right)^3}\times\frac{x+1}{x}\right]\div\frac{x-1}{x^3}\)

\(=\left(\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(x+1\right)^2}\times\frac{2}{x}\right)\div\frac{x-1}{x^3}\)

\(=\left(\frac{1}{\left(x+1\right)^2}\times\left(\frac{x^2+1}{x^2}+\frac{2}{x}\right)\right)\div\frac{x-1}{x^3}\)

\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x^3+2x^2+x}{x^3}\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x^2+2x+1\right)}{x^3}\right)\div\frac{x-1}{x^3}\)

\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x+1\right)^2}{x^3}\right)\div\frac{x-1}{x^3}\)

\(=\frac{1}{x^2}\times\frac{x^3}{x-1}\)

\(=\frac{x}{x-1}\)

Chi Nguyễn
Xem chi tiết
lê tũn
16 tháng 8 2016 lúc 17:54

a) số số x là 4 nên ta có:

(x.4)+1/2+1/4+1/8+1/16=1 mà 1/2+1/4+1/8+1/16=15/16 nên x=1-15/16=1/16:4=1/64

nguyenthitulinh
Xem chi tiết
hoanghuongly
Xem chi tiết
Trần Việt Linh
2 tháng 8 2016 lúc 13:27

\(\frac{1}{\left(x-1\right)x}+\frac{1}{\left(x-2\right)\left(x-1\right)}+\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-4\right)\left(x-3\right)}=\frac{x}{x^2-4x}\)

\(\Leftrightarrow\)\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}=\frac{x}{x\left(x-4\right)}\)

\(\Leftrightarrow\)\(-\frac{1}{x}+\frac{1}{x-4}=\frac{1}{x-4}\)

\(\Leftrightarrow\)\(\frac{-\left(x-4\right)+x}{x\left(x-4\right)}=\frac{x}{x\left(x-4\right)}\)

\(\Leftrightarrow\)\(4-x+x=x\)

\(\Leftrightarrow x=4\)

Nguyễn Thị Mai Huyền (B...
12 tháng 8 2016 lúc 15:02

lo nói mk làm cách lâu chứ m cx hỏi người khác!!!!!!!!!!! 

 

Diệp Thiên Giai
Xem chi tiết
Lightning Farron
10 tháng 11 2016 lúc 18:13

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

Lightning Farron
10 tháng 11 2016 lúc 18:18

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

Lightning Farron
10 tháng 11 2016 lúc 18:27

Bài 3:

a)\(2009-\left|x-2009\right|=x\)

\(\Rightarrow\left|x-2009\right|=2009-x\)

\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)

Vì GTTĐ của số âm bằng số đối của nó

\(\Rightarrow x-2009\le0\)

\(\Rightarrow x\le2009\)

Vậy với mọi \(x\le2009\) đều thỏa mãn

b)\(\left|3x+2\right|=\left|5x-3\right|\)

\(\Rightarrow3x+2=5x-3\) hoặc \(3x+2=3-5x\)

\(\Rightarrow2x=5\) hoặc \(8x=1\)

\(\Rightarrow x=\frac{5}{2}\) hoặc \(x=\frac{1}{8}\)

 

 

 

Đức Nhật Huỳnh
Xem chi tiết
Phương Anh (NTMH)
30 tháng 10 2016 lúc 10:27

a/ \(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\\3+2^{x+1}=24-\left[16-\left(4-1\right)\right]\)

\(3+2^{x+1}=24-\left(16-3\right)\\ 3+2^{x-1}=24-13\\ 3+2^{x-1}=11\\ 2^{x+1}=11-3\\ 2^{x-1}=8\)

\(2^{x-1}=2^3\\ \Rightarrow x-1=3\\x=3+1\\ x=4\)

 

Phương Anh (NTMH)
30 tháng 10 2016 lúc 10:35

\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=205550\)

\(\left(x.100\right)+\left(1+2+3+....+100\right)=205550\)

Ta tính tổng \(1+2+3+...+100\\ \) trước

Số các số hạng: \(\left[\left(100-1\right):1+1\right]=100\)

Tổng :\(\left[\left(100+1\right).100:2\right]=5050\)

Thay số vào ta có được:

\(\left(x.100\right)+5050=205550\\ \\ x.100=205550-5050\\ \\x.100=20500\\ \\x=20500:100\\ \\\Rightarrow x=2005\)

Phương Anh (NTMH)
30 tháng 10 2016 lúc 10:44

\(\left|x-5\right|=18+2.\left(-8\right)\\\left|x-5\right|=18+\left(-16\right)\\\left|x-5\right|=2\: \)

\(\Rightarrow\left[\begin{array}{nghiempt}x-5=2\\\\x-5=\left(-2\right)\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x=2+5\\\\x=\left(-2\right)+5\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=7\\\\x=3\end{array}\right.}\)

 

=> x ϵ {7;3}

 

Duong Thi Nhuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2022 lúc 1:01

\(A=\left(\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}+\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}\right):\dfrac{x-1}{x^3}\)

\(=\dfrac{x^2+3}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}=\dfrac{x\left(x^2+3\right)}{\left(x-1\right)\left(x+1\right)^2}\)

Công Nghệ Speed
Xem chi tiết
Min
4 tháng 12 2015 lúc 21:32

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+\right)\left(x+3\right)}+...+\frac{1}{\left(x+2015\right)\left(x+2016\right)}=\frac{1}{x+2016}\)

\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+2015}-\frac{1}{x+2016}=\frac{1}{x+2016}\)

\(\frac{1}{x}-\frac{1}{x+2016}=\frac{1}{x+2016}\)

\(\frac{1}{x}-\frac{1}{x+2016}-\frac{1}{x+2016}=0\)

\(\frac{1}{x}-\frac{2x}{x+2016}=0\)

\(\frac{x+2016}{x\left(x+2016\right)}-\frac{2x}{x\left(x+2016\right)}=0\)

\(\frac{x+2016-2x}{x\left(x+2016\right)}=0\Leftrightarrow2016-x=0\Leftrightarrow x=2016\)