Cho \(a \ge 2b\). Chứng minh:
a. \(2a - 1 \ge a + 2b - 1\)
b. \(4b + 4a \le 5a + 2b\)
Cho a,b,c là các số dương, chứng minh rằng
\(\dfrac{2a^2}{2b+c}+\dfrac{2b^2}{2a+c}+\dfrac{c^2}{4a+4b}\ge\dfrac{1}{4}\left(2a+2b+c\right)\)
\(P=\dfrac{4a^2}{4b+2c}+\dfrac{4b^2}{4a+2c}+\dfrac{c^2}{4a+4b}\ge\dfrac{\left(2a+2b+c\right)^2}{8a+8b+4c}\)
\(=\dfrac{\left(2a+2b+c\right)^2}{4\left(2a+2b+c\right)}=\dfrac{1}{4}\left(2a+2b+c\right)\)
Cho a,b,c>0 chứng minh \(\frac{2a^2}{2b+c}+\frac{2b^2}{2a+c}+\frac{c^3}{4a+4b}\ge\frac{1}{4}\left(2a+2b+c\right)\)
Chứng minh rằng :
a) Nếu a ≤ b thì -2a+3 ≥ -2b+3
b) Nếu a > b thì 2a-5 > 2b-5
c) Nếu a > b thì 5a > 5b-1
a) vì a≤ b
Nhân cả 2 vế của BĐT với -2
=> -2a≥ -2b
Cộng cả 2 vế của BĐT với 3
=> -2a+3 ≥ -2b+3
b) vì a>b
Nhân cả 2 vế với 2
=> 2a>2b
Cộng cả 2 vế với (-5)
=> 2a -5> 2b-5
c) vì a>b
Nhân cả 2 vế với 5
=> 5a>5b (1)
Vì 0> -1
Cộng cả 2 vế với 5b
=> 5b> 5b -1 (2)
Từ (1) và (2) => 5a> 5b-1
a/ a ≤ b =>-2a ≥ -2b => -2a+3 ≥ -2b+3
b/ a > b => 2a > 2b => 2a-5 > 2b-5
c/ a > b => 5a > 5b
0 > -1
=> 5a + 0 > 5b + (-1)
<=> 5a > 5b -1
Cho a,b,c>0. Chứng minh: \(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\)\(\ge\frac{9}{4a+4b+4c}\)
Áp dụng bđt Cauchy-Schwarz:
\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\ge\frac{\left(1+1+1\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\frac{9}{4a+4b+4c}\)Dấu "=" xảy ra khi a=b=c
Cho a,b,c là độ dài 3 cạnh 1 tam giác.
Chứng minh rằng:
\(\left(\frac{2a+2b-c}{a+b+4c}\right)^3+\left(\frac{2b+2c-a}{b+c+4a}\right)^3+\left(\frac{2c+2a-b}{c+a+4b}\right)^3\ge\frac{9}{2}\left(a^2+b^2+c^2\right)\)
Bài này không đúng nhé. Với a = b = c = 1 thì bất đẳng thức sai. Tuy nhiên bài này đúng theo chiều ngược lại.
Ta sẽ chứng minh bất đẳng thức phụ sau đây \(x^2+y^2+z^2\ge xy+yz+zx\)
\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*
Đặt \(\left\{2a+2b-c;2b+2c-a;2c+2a-b\right\}\rightarrow\left\{x;y;z\right\}\)
Vì a,b,c là ba cạnh của 1 tam giác nên x,y,z dương
Ta có : \(x^2+y^2+z^2=9\left(a^2+b^2+c^2\right)\)
\(x+y=c+a+4b\); \(y+z=a+b+4c\); \(z+x=b+c+4a\)
Bất đẳng thức cần chứng minh quy về : \(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{x^3}{y+z}+\frac{x\left(y+z\right)}{4}\ge2\sqrt{\frac{x^3.x\left(y+z\right)}{\left(y+z\right)4}}=2\sqrt{\frac{x^4}{4}}=2\frac{x^2}{2}=x^2\)
\(\frac{y^3}{x+z}+\frac{y\left(x+z\right)}{4}\ge2\sqrt{\frac{y^3.y\left(x+z\right)}{\left(x+z\right)4}}=2\sqrt{\frac{y^4}{4}}=2\frac{y^2}{2}=y^2\)
\(\frac{z^3}{x+y}+\frac{z\left(x+y\right)}{4}\ge2\sqrt{\frac{z^3.z\left(x+y\right)}{\left(x+y\right)4}}=2\sqrt{\frac{z^4}{4}}=2\frac{z^2}{2}=z^2\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{x\left(y+z\right)}{4}+\frac{y\left(x+z\right)}{4}+\frac{z\left(x+y\right)}{4}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx+xy+yz+zx}{4}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx}{2}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge x^2+y^2+z^2-\frac{xy+yz+zx}{2}\)
Sử dụng bất đẳng thức phụ \(x^2+y^2+z^2\ge xy+yz+zx\)khi đó ta được :
\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{y+x}\ge x^2+y^2+z^2-\frac{x^2+y^2+z^2}{2}\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\left(đpcm\right)\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z< =>a=b=c\)
Vậy ta có điều phải chứng minh
c)-4a+2 và -4b+2
2)so sánh a và b,nếu :
a)2a+4 ≥ 2b+4
b)3a-5 ≤ 3b-5
3)cho a ≤ b,chứng minh:
a)2019a + 2020 ≤ 2019b + 2020
b)-42a - 24 ≥ -42b – 24
3)cho a > b,chứng minh:
a)3a+2 > 3b+2
b)-4a – 5< -4b – 5.
2,
a, Nếu 2a + 4 \(\ge\) 2b + 4
thì 2a \(\ge\) 2b hay a \(\ge\) b
b, Nếu 3a - 5 \(\le\) 3b - 5
thì 3a \(\le\) 3b hay a \(\le\) b
3,
a, Nếu a \(\le\) b thì a - b \(\le\) 0 hay 2019(a - b) \(\le\) 0 hay 2019a \(\le\) 2019b hay 2019a + 2020 \(\le\) 2019b + 2020
b, Nếu a \(\le\) b thì -a \(\ge\) -b hay -42a \(\ge\) -42b hay -42a - 24 \(\ge\) -42b - 24
3,
a, Nếu a > b thì 3a > 3b hay 3a + 2 > 3b + 2
b, Nếu a > b thì -a < -b hay -4a < -4b hay -4a - 5 < -4b - 5
Chúc bn học tốt!!
cho 5a-b+2c/c=5b-2c+a/a=5c-2a+b/b(a,b,c>0).Tinh gtbt A=(4b+2a)*(4c+2b)*(4a+2c)/(5a-2b)*(5b-2c)*(5c-2a)
Cho 3a ≤ 2b ( b ≥ 0 ). Hãy so sánh 2 số 5a và 4b
Ta có:
3a <= 2b
=> 6a <= 4b
mà 5a < 6a
=> 5a < 4b
ta có : 3a ≤ 2b ⇒ 5/3.3a < 5/3.2b ⇒ 5a <10/3b (1)
Vì 10/3<4 và b ≥ 0 nên 10/3b ≤ 4b (2)
từ (1) và (2) ⇒ 5a ≤ 4b ( tính chất bắc cầu)
Cho a >b . Chứng minh : a)4a – 3 > 4b – 3; b) 1 – 2a < 1- 2b ; c) 5( a+ 3) - 4 > 5( b + 3) – 4; d)5 – 2a < 5 – 2b e) – 2 (1 – a) – 6 > -2 (1 – b ) – 6
a. Ta có: a > b
4a > 4b ( nhân cả 2 vế cho 4)
4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)
b. Ta có: a > b
-2a < -2b ( nhân cả 2 vế cho -2)
1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)
d. Ta có: a < b
-2a > -2b ( nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)
với a,b,c ≥ 0 và a+b+c=3. chứng minh rằng:
(1) a/a+2bc+b/b+2ac+c/c+2ab ≥1 (2)a/2a+bc+b/2b+ac+c/2c+ab ≤ 1