Tìm x, biết \(x\in N\)sao cho \(1+2+3+...+x=\overline{aaa}\)
Biết \(x\in N\) và x > 2. Tìm x sao cho \(\overline{x\left(x-1\right)}.\overline{x\left(x-1\right)}=\overline{\left(x-2\right)xx\left(x-1\right)}\)
a, Tìm số tự nhiên \(n\) , chữ số a sao cho : \(1+2+3+...+n=\overline{aaa}\) ( \(\overline{aaa}\) là số có 3 chữ số )
b, Tìm \(x;y;z\) biết \(\frac{x}{y}=\frac{3}{2};5z=7z\) và \(x-2y+z=32\)
c, Cho \(c\ne0\) và \(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\) . Chứng minh rằng : \(\frac{a}{b}=\frac{b}{c}.\) ( \(\overline{ab}\) và \(\overline{bc}\) là số có hai chữ số )
Bài 1:
$1+2+3+...+n=\overline{aaa}$
$\Leftrightarrow \frac{n(n+1)}{2}=a.111$
$\Leftrightarrow n(n+1)=a.222\vdots 37$ nên suy ra $n\vdots 37$ hoặc $n+1\vdots 37$
Nếu $n\vdots 37$. Đặt $n=37k$ với $k\in\mathbb{N}^*$
Khi đó: $37k(37k+1)=222a\Rightarrow k(37k+1)=6a$
$6a\leq 54$ do $a\leq 9; 37k+1\geq 38$ do $k\geq 1$
$\Rightarrow k=\frac{6a}{37k+1}< 2\Rightarrow k=1$
$\Rightarrow 6a=38$ (vô lý)
Nếu $n+1\vdots 37$. Đặt $n+1=37k$ với $k\in\mathbb{N}^*$
Khi đó: $(37k-1).37k=222a\Rightarrow k(37k-1)=6a$
$6a\leq 54$ do $a\leq 9$; $37k-1\geq 36$ do $k\geq 1$
$\Rightarrow k=\frac{6a}{37k-1}< 2\Rightarrow k=1$
$\Rightarrow n=36; a=6$
Bài 2: $5z=7z$ hình như sai, bạn coi lại đề.
Bài 3:
\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Leftrightarrow \frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)
\(\Leftrightarrow \frac{9a+(a+b)}{a+b}=\frac{9b+(b+c)}{b+c}\Leftrightarrow \frac{9a}{a+b}+1=\frac{9b}{b+c}+1\)
\(\Leftrightarrow \frac{a}{a+b}=\frac{b}{b+c}\Rightarrow ab+ac=ab+b^2\)
\(\Leftrightarrow ac=b^2\Rightarrow \frac{a}{b}=\frac{b}{c}\) (đpcm)
Bài 2 sau khi đã sửa đề thành $5x=7z$:
Ta có:
\(\frac{x}{y}=\frac{3}{2}\Leftrightarrow \frac{x}{3}=\frac{y}{2}\Leftrightarrow \frac{x}{21}=\frac{y}{14}(1)\)
\(5x=7z\Leftrightarrow \frac{x}{7}=\frac{z}{5}\Leftrightarrow \frac{x}{21}=\frac{z}{15}(2)\)
Từ $(1);(2)\Rightarrow \frac{x}{21}=\frac{y}{14}=\frac{z}{15}$ và đặt bằng $k$
$\Rightarrow x=21k; y=14k; z=15k$
Khi đó:
$x-2y+z=32$
$\Leftrightarrow 21k-28k+15k=32\Leftrightarrow 8k=32\Rightarrow k=4$
$\Rightarrow x=21k=84; y=14k=56; z=15k=60$
a. Tìm y :
( y + 1,2) x 5 + 10, 34 = 5,34
b. Tìm số tự nhiên x để : 1+2+3+4+ ....+ x = \(\overline{aaa}\)
Giúp mình với !!!!!!!!
a: =>y+1,2=(5,34-10,34):5=-1
=>y=-2,2
b: =>x(x+1)/2=111a
=>x(x+1)=222a
=>\(x\in\varnothing\)
1. Tìm số tự nhiên x biết \(3^x+3^{x+1}+3^{x+2}=351\).
2. Cho C=\(2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\). Hãy giải thích vì sao C chia hết cho 5.
3. Cho \(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮9\). Hãy giải thích \(\overline{abcdeg}⋮9\).
4. Cho S=\(3^0+3^2+3^4+3^6+...+3^{2002}\). So sánh 8S và \(3^{2004}\).
1) \(3^x+3^{x+1}+3^{x+2}=351\)
\(\Rightarrow3^x\left(1+3^1+3^2\right)=351\)
\(\Rightarrow3^x.13=351\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
2) \(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(\Rightarrow C=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)...+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(\Rightarrow C=30+2^4.30...+2^{96}.30\)
\(\Rightarrow C=\left(1+2^4+...+2^{96}\right).30⋮30\)
mà \(30=5.6\)
\(\Rightarrow C⋮5\left(dpcm\right)\)
1,
Có \(3^x\)+ \(3^{x+1}\) + \(3^{x+2}\) = \(351\)
=> \(3^x\) + \(3^x\).\(3\) + \(3^x\).\(9\) = \(351\)
=> \(3^x\).\(13\) = \(351\)
=> \(3^x\) = \(27\)
=> \(x\) = \(3\)
2,
C = \(2\) + \(2^2\) + \(2^3\) + ... + \(2^{100}\)
2C = \(2^2\) + \(2^3\) + \(2^4\) + ... + \(2^{101}\)
2C - C = \(2^{101}\) - \(2\)
C = \(2^{101}\) - \(2\)
C = \(2\).\(\left(2^{100}-1\right)\)
C = 2.\(\left(\left(2^5\right)^{20}-1^{20}\right)\)
Có \(2^5\) \(-1\) \(⋮\) 5
=> \(\left(\left(2^5\right)^{20}-1^{20}\right)\) \(⋮\) 5
=> C \(⋮\) 5
3,
Xét \(\overline{abcdeg}\)
= \(\overline{ab}\).\(10000\) + \(\overline{cd}\).\(100\) + \(\overline{eg}\)
= \(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\) + \(9.\left(1111.\overline{ab}+11.\overline{cd}\right)\)
Có\(\left\{{}\begin{matrix}9.\left(1111.\overline{ab}+11.\overline{cd}\right)⋮9\left(1111.\overline{ab}+11.\overline{cd}\inℕ^∗\right)\\\overline{ab}+\overline{cd}+\overline{eg}⋮9\end{matrix}\right.\)
=> \(\overline{abcdeg}⋮9\)
4,
S = \(3^0+3^2+3^4+...+3^{2002}\)
9S = \(3^2+3^4+3^6+...+3^{2004}\)
9S - S = \(3^2+3^4+3^6+...+3^{2004}\) - (\(3^0+3^2+3^4+...+3^{2002}\))
8S = \(3^{2004}-1\)
=> 8S \(< 3^{2004}\)
Tìm n \(\in\) N* và chữ số a biết:
1 + 2 + 3 + ... + n = \(\overline{aaa}\)
1 + 2 + 3 + ... + n = \(\overline{aaa}\)
=> ( n + 1 ) x n : 2 = 3 x 37 x a
=> n x ( n + 1 ) = 6a x 37
Vì n x ( n + 1 ) là tích 2 số liên tiếp nên 6a x 37 là tích 2 số tự nhiên liên tiếp
=> 6a = 36
=> a = 6 ( vì a \(\in\) N )
Do đó n x ( n + 1 ) = 36 x 37
=> n = 36 ( vì n \(\in N\)*)
Vậy n = 36; a = 6
a, Tìm x,y thỏa: \(\left(12x-y+7\right)^{2016}+\left|2x-3\right|^{2017}\le0\)
b, Tìm \(n\in N\) và chữ số a biết: \(1+2+3+...+n=\overline{aaa}\)
a)Ta thấy: \(\left\{{}\begin{matrix}\left(12x-y+7\right)^{2016}\ge0\forall x,y\\\left|2x-3\right|^{2017}\ge0\forall x\end{matrix}\right.\)
\(\Rightarrow\left(12x-y+7\right)^{2016}+\left|2x-3\right|^{2017}\ge0\forall x,y\)
Mà \(\left(12x-y+7\right)^{2016}+\left|2x-3\right|^{2017}\le0\)
Nên xảy ra khi \(\left(12x-y+7\right)^{2016}+\left|2x-3\right|^{2017}=0\)
\(\left\{{}\begin{matrix}\left(12x-y+7\right)^{2016}=0\\\left|2x-3\right|^{2017}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}12x-y+7=0\\x=\dfrac{3}{2}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=25\\x=\dfrac{3}{2}\end{matrix}\right.\)
b)\(1+2+3+...+n=\overline{aaa}\)
Ta có: \(\left\{{}\begin{matrix}VT=\dfrac{n\left(n+1\right)}{2}\\VP=a\cdot111\end{matrix}\right.\)
\(\Rightarrow\dfrac{n\left(n+1\right)}{2}=a\cdot111\Rightarrow n\left(n+1\right)=a\cdot222\)
\(\Rightarrow n\left(n+1\right)=6a\cdot37=6a\left(36+1\right)\)
Dễ thấy: \(n\left(n+1\right)\) là \(2\) số tự nhiên liên tiếp và \(6a\) và \(36+1\) là 2 số tự nhiên liên tiếp
\(\Rightarrow6a=36\Rightarrow a=6\Rightarrow n=36\)
a)Tìm x biết: 1+5+9+13+16+ ... +x=501501
b)Tìm n biết: 1+2+3+ ..........+n=aaa
aaa là số tự nhiên đó
Biết \(x\inℕ\)và x > 2
Tìm x sao cho : \(\overline{x\left(x-1\right).x\left(x-1\right)}=\overline{\left(x-2\right)xx\left(x-1\right)}\)
X. ( X - 1) . X ( X - 1 ) = ( X - 2) XX ( X - 1)
X . X - X . 1 . X . X - X . 1 = X . X - X . 2 . X . X - X . 1
2X - X . 1 . 2X - X . 1 = 2X - X. 2 . 2X - X
2 . 1 . 2 . 1 = 2 . 2 . 1
4 = 4
a. Tìm các chữ số a,b biết rằng số \(\overline{a1984b}\) là một bội số của 45.
b. Tìm X \(\in\) N sao cho 3x +2.3x-2 =297
c. Tính A=\(\dfrac{6^{14}+2^{14}.9^8}{12.8^4.3^{12}}\)
b: Ta có: \(3^x+2\cdot3^{x-2}=297\)
\(\Leftrightarrow3^x=297:\dfrac{11}{9}=243\)
hay x=5