Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngoc Linh
Xem chi tiết
Toru
13 tháng 12 2023 lúc 21:19

\((x+5)^2+4(x+5)(x-5)+4(x^2-10x+25)=0\\\Rightarrow(x+5)^2+4(x+5)(x-5)+4(x^2-2\cdot x\cdot5+5^2)=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+4(x-5)^2=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+[2(x-5)]^2=0\\\Rightarrow[(x+5)+2(x-5)]^2=0\\\Rightarrow(x+5+2x-10)^2=0\\\Rightarrow(3x-5)^2=0\\\Rightarrow3x-5=0\\\Rightarrow3x=5\\\Rightarrow x=\frac53\\\text{#}Toru\)

Toru
13 tháng 12 2023 lúc 19:19

Sao đề là phân tích mà lại "= 0" vậy bạn?

Phương Trần Lê
Xem chi tiết
ILoveMath
26 tháng 12 2021 lúc 16:06

tách nhỏ câu hỏi ra bạn

Kudo Shinichi
26 tháng 12 2021 lúc 16:08

\(a.10x\left(x-y\right)-6y\left(y-x\right)\\ =10x\left(x-y\right)+6y\left(x-y\right)\\ =\left(10x-6y\right)\left(x-y\right)\\ =2\left(5x-3y\right)\left(x-y\right)\)

\(b.14x^2y-21xy^2+28x^3y^2\\ =7xy\left(x-y+xy\right)\)

\(c.x^2-4+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2+x-2\right)\\ =2x\left(x-2\right)\)

\(d.\left(x+1\right)^2-25\\ =\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)

 

Ichigo Minako
Xem chi tiết
Hoàng Ninh
25 tháng 8 2021 lúc 22:31

\(B=x^8+2x^5-2x^4+x^2-2x-100+10x\left(x^4+x\right)+\left(5x-1\right)^2\)

\(=x^8+2x^5-2x^4+x^2-2x-100+10x^5+25x^2-10x+1\)

\(=x^8+12x^5-2x^4+36x^2-12x-99\)

\(=x^8+6x^5+9x^4+6x^5+36x^2+54x-11x^4-66x-99\)

\(=x^4\left(x^4+6x+9\right)+6x\left(x^4+6x+9\right)-11\left(x^4+6x+9\right)\)

\(=\left(x^4+6x+9\right)\left(x^4+6x-11\right)\)

Khách vãng lai đã xóa
Lê Vũ Anh Thư
Xem chi tiết
ST
1 tháng 8 2018 lúc 21:20

a, \(x^4+5x^3+10x-4=x^4+5x^3-2x^2+2x^2+10x-4\)

\(=x^2\left(x^2+5x-2\right)+2\left(x^2+5x-2\right)=\left(x^2+2\right)\left(x^2+5x-2\right)\)

b, Câu hỏi của Subin - Toán lớp 8 - Học toán với OnlineMath

Nguyễn Quang Trung
Xem chi tiết
Trần Ái Linh
10 tháng 7 2021 lúc 21:52

`(x+3)^4+(x+5)^4-2`

`={[(x+3)^2]^2-1^2}+{[(x+5)^2]^2 -1^2}`

`=[(x+3)^2-1^2][(x+3)^2+1]+[(x+5)^2-1^2][(x+5)^2+1]`

`=(x+3-1)(x+3+1)[(x+3)^2+1]+(x+5-1)(x+5+1)[(x+5)^2+1]`

`=(x+2)(x+4)[(x+3)^2+1]+(x+4)(x+6)[(x+5)^2+1]`

`=(x+4){(x+2)[(x+3)^2+1]+(x+6)[(x+5)^2+1]}`

`=(x+4)(2x^3+24x^2+108x+176)`

Nguyễn Lê Phước Thịnh
10 tháng 7 2021 lúc 22:46

\(\left(x+3\right)^4+\left(x+5\right)^4-2\)

\(=\left[\left(x+3\right)^4-1\right]+\left[\left(x+5\right)^4-1\right]\)

\(=\left[\left(x^2+6x+9-1\right)\left(x^2+6x+9+1\right)\right]+\left[\left(x^2+10x+25-1\right)\left(x^2+10x+25+1\right)\right]\)

\(=\left(x^2+6x+8\right)\left(x^2+6x+10\right)+\left(x^2+10x+24\right)\left(x^2+10x+26\right)\)

\(=\left(x+2\right)\left(x+4\right)\left(x^2+6x+10\right)+\left(x+4\right)\left(x+6\right)\left(x^2+10x+26\right)\)

\(=\left(x+4\right)\left[\left(x+2\right)\left(x^2+6x+10\right)+\left(x+6\right)\left(x^2+10x+26\right)\right]\)

\(=\left(x+4\right)\left(x^3+6x^2+10x+2x^2+12x+20+x^3+10x^2+26x+6x^2+60x+156\right)\)

\(=\left(x+4\right)\left(2x^3+24x^2+108x+176\right)\)

\(=2\left(x+4\right)\left(x^3+12x^2+54x+88\right)\)

Buddy
Xem chi tiết
HT.Phong (9A5)
23 tháng 7 2023 lúc 15:38

\(S=x^6-8\)

\(S=\left(x^2\right)^3-2^3\)

\(S=\left(x^2-2\right)\left(x^4+2x^2+4\right)\)

⇒ Chọn C

@DanHee
23 tháng 7 2023 lúc 15:38

\(=\left(x^2\right)^3-2^3=\left(x^2-2\right)\left(x^4+2x^2+4\right)\\ =>C\)

inderip
Xem chi tiết
Akai Haruma
21 tháng 8 2023 lúc 16:56

Lời giải:

a. 

$(xy)^2-xy-2=(x^2y^2+xy)-(2xy+2)$

$=xy(xy+1)-2(xy+1)=(xy+1)(xy-2)$

b. Bạn xem lại đoạn $-16x^2$ là dấu - hay + vậy?

Nguyễn Tùng Lâm
Xem chi tiết
Laura
21 tháng 10 2019 lúc 18:24

a) -3x^2+x+4

=-3x^2-3x+4x+4

=-3x.(x+1)+4.(x+1)

=(x+1).(4-3x)

Khách vãng lai đã xóa
Kiệt Nguyễn
21 tháng 10 2019 lúc 20:45

b) \(x^3-3x^2+2\)

\(=x^3-2x^2-x^2+2\)

\(=x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\)

\(=\left(x^2-x-2\right)\left(x-2\right)\)

c) \(x^4y^4+64\)

\(=x^4y^4+16x^2+64-16x^2\)

\(=\left(x^2y^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2y^2-4x+8\right)\left(x^2y^2+4x+8\right)\)

d) \(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+1\)

\(=x^6\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)\)

\(=x^6\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)

\(=\left(x^2+x+1\right)\left[x^6-\left(x-1\right)\left(x^3+1\right)\right]\)

\(=\left(x^2+x+1\right)\left[x^6-x^4-x+x^3-1\right]\)

Khách vãng lai đã xóa
Kiệt Nguyễn
21 tháng 10 2019 lúc 20:53

e)\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(1)

Đặt \(x^2+5x+4=t\)

\(\Rightarrow\left(1\right)=t\left(t+2\right)-24=t^2+2t-24\)

\(=t^2+6t-4t-24=\left(t-4\right)\left(t+6\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

Khách vãng lai đã xóa
Subin
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
10 tháng 6 2018 lúc 9:40

b mk thấy nó sai đề sao ý 

c) \(C=\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+15x^2\)

\(=\left(x^2+x+4\right)^2+2.4x.\left(x^2+x+4\right)+16x^2-x^2\)

\(=\left(x^2+x+4+4x\right)^2-x^2\)

\(=\left(x^2+5x+4\right)^2-x^2\)

\(=\left(x^2+5x+4-x\right)\left(x^2+5x+4+x\right)=\left(x^2+4x+4\right)\left(x^2+6x+4\right)\)

thùy linh
Xem chi tiết
Ngô Hải Nam
23 tháng 12 2022 lúc 12:40

bài 11

a) \(x^2-xy+x\\ =x\left(x-y+1\right)\)

b)

\(x^2-2xy-4+y^2\\ =\left(x^2-2xy+y^2\right)-4\\ =\left(x-y\right)^2-4\\ =\left(x-y-2\right)\left(x-y+2\right)\)

c)

\(x^3-x^2-16x+16\\ =x^2\left(x-1\right)-16\left(x-1\right)\\ =\left(x-1\right)\left(x-4\right)\left(x+4\right)\)

bài 12

\(2x\left(x-5\right)-x\left(3+2x\right)=26\)

\(2x^2-10x-3x-2x^2=26\)

\(-13x=26\\ x=-2\)

b)

\(2\left(x+5\right)-x^2-5x=0\\ 2\left(x+5\right)-x\left(x+5\right)=0\\ \left(x+5\right)\left(2-x\right)=0\\ \left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)