`(x+3)^4+(x+5)^4-2`
`={[(x+3)^2]^2-1^2}+{[(x+5)^2]^2 -1^2}`
`=[(x+3)^2-1^2][(x+3)^2+1]+[(x+5)^2-1^2][(x+5)^2+1]`
`=(x+3-1)(x+3+1)[(x+3)^2+1]+(x+5-1)(x+5+1)[(x+5)^2+1]`
`=(x+2)(x+4)[(x+3)^2+1]+(x+4)(x+6)[(x+5)^2+1]`
`=(x+4){(x+2)[(x+3)^2+1]+(x+6)[(x+5)^2+1]}`
`=(x+4)(2x^3+24x^2+108x+176)`
\(\left(x+3\right)^4+\left(x+5\right)^4-2\)
\(=\left[\left(x+3\right)^4-1\right]+\left[\left(x+5\right)^4-1\right]\)
\(=\left[\left(x^2+6x+9-1\right)\left(x^2+6x+9+1\right)\right]+\left[\left(x^2+10x+25-1\right)\left(x^2+10x+25+1\right)\right]\)
\(=\left(x^2+6x+8\right)\left(x^2+6x+10\right)+\left(x^2+10x+24\right)\left(x^2+10x+26\right)\)
\(=\left(x+2\right)\left(x+4\right)\left(x^2+6x+10\right)+\left(x+4\right)\left(x+6\right)\left(x^2+10x+26\right)\)
\(=\left(x+4\right)\left[\left(x+2\right)\left(x^2+6x+10\right)+\left(x+6\right)\left(x^2+10x+26\right)\right]\)
\(=\left(x+4\right)\left(x^3+6x^2+10x+2x^2+12x+20+x^3+10x^2+26x+6x^2+60x+156\right)\)
\(=\left(x+4\right)\left(2x^3+24x^2+108x+176\right)\)
\(=2\left(x+4\right)\left(x^3+12x^2+54x+88\right)\)