tính
a, \(\sqrt{\left(3-\sqrt{5}\right)^2}\) - \(\sqrt{5}\)
b \(\sqrt{\left(4-2\sqrt{3}\right)^2}\)
Tính
A = \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
B = \(\sqrt{\left(4-\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
C = \(\sqrt{\left(1-\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(A=\left|2-\sqrt{3}\right|+\left|1+\sqrt{3}\right|=2-\sqrt{3}+1+\sqrt{3}=3\)
\(B=\left|4-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=4-\sqrt{5}-\sqrt{5}+2=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\)
\(C=\left|1-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=\sqrt{5}-1-\sqrt{5}+2=1\)
\(A=\left|2-\sqrt{3}\right|+\left|1+\sqrt{3}\right|=2-\sqrt{3}+1+\sqrt{3}=3\)
\(B=\left|4-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=4-\sqrt{5}-\sqrt{5}+2=6-2\sqrt{5}\)
C=\(\left|1-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=\sqrt{5}-1-\sqrt{5}+2=1\)
B 3. Tính
a)\(\sqrt{\left(\sqrt{7}-1\right)^2}\) b)\(\sqrt{\left(2-\sqrt{3}\right)^2}\)
c)\(\sqrt{\left(\sqrt{2}+5\right)^2}-\sqrt{2}\) d)\(\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-6\right)^2}\)
a.\(\sqrt{\left(\sqrt{7}-1\right)^2}=\left|\sqrt{7}-1\right|=\sqrt{7}-1\)
b.\(\sqrt{\left(2-\sqrt{3}\right)^2}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)
c.\(\sqrt{\left(\sqrt{2}+5\right)^2}-\sqrt{2}=\left|\sqrt{2}+5\right|-\sqrt{2}=\sqrt{2}+5-\sqrt{2}=5\)
d.\(\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-6\right)^2}=\left|3+\sqrt{5}\right|+\left|\sqrt{5}-6\right|=3+\sqrt{5}+6-\sqrt{5}=9\)
a: \(=\sqrt{7}-1\)
b: \(=2-\sqrt{3}\)
c: \(=5+\sqrt{2}-\sqrt{2}=5\)
d: \(=3+\sqrt{5}+6-\sqrt{5}=9\)
a)\(=\sqrt{7}-1\)
b)\(=2-\sqrt{3}\)
c)\(=\sqrt{2}+5-\sqrt{2}=5\)
d)\(=3+\sqrt{5}+\sqrt{5}+6=9\)
Tính
a,\(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
b,\(\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
c,\(\left(\sqrt{5-2}\right)\left(\sqrt{5+2}\right)\)
a: Ta có: \(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{\sqrt{2}}=-\sqrt{2}\)
b: Ta có: \(\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
\(=\dfrac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}\)
\(=\sqrt{2}\)
c: \(\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)=5-4=1\)
Bài 1: Tính
a) \(5\sqrt{8}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
b) \(1\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(1-\sqrt{6}\right)^2}\)
c) \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\dfrac{1}{4+\sqrt{15}}\)
d) \(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\)
Bài 2: Cho (d₁): y = \(\dfrac{1}{2}x-4\) và (d₂): y = \(-3x+3\) . Vẽ (d₁) và (d₂) trên cùng một hệ trục tọa độ. Tìm tọa độ giao điểm A của 2 đường thẳng trên.
Helpp!!
Bài 1:
a: \(5\sqrt{8}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
\(=5\cdot2\sqrt{2}-4\cdot3\sqrt{3}-2\cdot5\sqrt{3}+6\sqrt{3}\)
\(=10\sqrt{2}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}\)
\(=10\sqrt{2}-16\sqrt{3}\)
b: \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(1-\sqrt{6}\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|1-\sqrt{6}\right|\)
\(=3-\sqrt{6}+\sqrt{6}-1\)
=3-1=2
c: \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\dfrac{1}{4+\sqrt{15}}\)
\(=\dfrac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}+\dfrac{1\left(4-\sqrt{15}\right)}{16-15}\)
\(=\sqrt{15}+4-\sqrt{15}=4\)
d: \(\dfrac{2\sqrt{3-\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\)
\(=\dfrac{\sqrt{3-\sqrt{5}}\cdot\sqrt{2}\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}\left(\sqrt{3}+1\right)}{2\left(\sqrt{3}+1\right)}\)
\(=\dfrac{\sqrt{6-2\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}}{2}\)
\(=\sqrt{\left(\sqrt{5}-1\right)^2}\cdot\dfrac{\left(3+\sqrt{5}\right)}{\sqrt{5}-1}-\dfrac{\sqrt{5}}{2}\)
\(=3+\sqrt{5}-\dfrac{\sqrt{5}}{2}=3+\dfrac{\sqrt{5}}{2}\)
Bài 2:
Vẽ đồ thị:
Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x-4=-3x+3\)
=>\(\dfrac{1}{2}x+3x=3+4\)
=>\(\dfrac{7}{2}x=7\)
=>x=2
Thay x=2 vào y=-3x+3, ta được:
\(y=-3\cdot2+3=-3\)
Vậy: (d1) cắt (d2) tại A(2;-3)
thực hiện phép tính
a)\(\dfrac{3}{5}\)-\(\dfrac{1}{2}\)\(\sqrt{1\dfrac{11}{25}}\)
b)(5+2\(\sqrt{6}\))(5-2\(\sqrt{6}\))
c)\(\sqrt{\left(2-\sqrt{3}\right)^2}\)+\(\sqrt{4-2\sqrt{3}}\)
d)\(\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)(với x,y>0)
\(a,\dfrac{3}{5}-\dfrac{1}{2}\sqrt{1\dfrac{11}{25}}=\dfrac{3}{5}-\dfrac{1}{2}\sqrt{\dfrac{36}{25}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{\sqrt{6^2}}{\sqrt{5^2}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{6}{5}=\dfrac{3}{5}-\dfrac{6}{10}=\dfrac{3}{5}-\dfrac{3}{5}=0\)
\(b,\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)=5^2-\left(2\sqrt{6}\right)^2=25-2^2.\sqrt{6^2}=25-4.6=25-24=1\)
\(c,\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\\ =\left|2-\sqrt{3}\right|+\sqrt{\sqrt{3^2}-2\sqrt{3}+1}\\ =2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =2-\sqrt{3}+\left|\sqrt{3}-1\right|\\ =2-\sqrt{3}+\sqrt{3}-1\\ =1\)
\(d,\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\left(dk:x,y>0\right)\\ =\dfrac{\left(\sqrt{x^2}.\sqrt{y}+\sqrt{y^2}.\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\sqrt{x^2}-\sqrt{y^2}\\ =\left|x\right|-\left|y\right|\\ =x-y\)
Tính
a,\(\sqrt{4+\sqrt{15}}\)
b,\(\left(3-\sqrt{2}\right)\sqrt{11+6\sqrt{2}}\)
c,\(\left(\sqrt{5}+\sqrt{7}\right)\sqrt{12-2\sqrt{35}}\)
a: Ta có: \(\sqrt{4+\sqrt{15}}\)
\(=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}+\sqrt{6}}{2}\)
b: Ta có: \(\left(3-\sqrt{2}\right)\cdot\sqrt{11+6\sqrt{2}}\)
\(=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)\)
=9-2
=7
c: Ta có: \(\left(\sqrt{7}+\sqrt{5}\right)\cdot\sqrt{12-2\sqrt{35}}\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
=2
thực hiện phép tính
a, \(\dfrac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
b, \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
c, \(\sqrt{2-\sqrt{3}}.\left(\sqrt{5}+\sqrt{2}\right)\)
d, \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
e, \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
f, \(\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}\)
g, \(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
h, \(\dfrac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}+\dfrac{6-4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}\)
i, \(\dfrac{\left(\sqrt{5+2}\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
k, \(\sqrt{14-8\sqrt{3}}-\sqrt{24-12\sqrt{3}}\)
l, \(\dfrac{4}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-2}+\dfrac{6}{\sqrt{3}-3}\)
m, \(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
n, \(\dfrac{\sqrt{3}}{1-\sqrt{\sqrt{3+1}}}+\dfrac{\sqrt{3}}{1+\sqrt{\sqrt{3+1}}}\)
Thực hiện phép tính
a)\(\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\)
b)\(\left(\sqrt[3]{25}-\sqrt[3]{10}+\sqrt[3]{4}\right)\)\(\left(\sqrt[3]{5}+\sqrt[3]{2}\right)\)
`a)\root[3]{135}/\root[3]{5}-\root[3]{54}.\root[3]{4}`
`=\root[3]{135/5}-\root[3]{54.4}`
`=\root[3]{27}-\root[3]{216}`
`=3-6=-3`
`b)(\root[3]{25}-\root[3]{10}+\root[3]{4})(\root[3]{5}+\root[3]{2})`
`=5+\root[3]{50}-\root[3]{50}-\root[3]{20}+\root[3]{20}+2`
`=7`.
* Thực hiện phép tính
a. \(\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(2\left(-5\right)\right)^2}\)
b. \(\dfrac{\sqrt{270}}{\sqrt{30}}-\sqrt{1,8}.\sqrt{20}\)
a, \(\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(2\left(-5\right)\right)^2}\)
\(=\left|3-\sqrt{2}\right|+\sqrt{\left(-10\right)^2}\)
\(=3-\sqrt{2}+\left|-10\right|\)
\(=3-\sqrt{2}+10\)
\(=13-\sqrt{2}\)
b, \(\dfrac{\sqrt{270}}{\sqrt{30}}-\sqrt{1,8}.\sqrt{20}\)
\(=\sqrt{9}-\sqrt{1,8.20}\)
\(=3-\sqrt{36}\)
\(=3-6\)
\(=-3\)