Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Adu vip
Xem chi tiết
Akai Haruma
9 tháng 7 2021 lúc 22:33

Lời giải:
\(P=\frac{2(\sqrt{x}+1)-3}{\sqrt{x}+1}=2-\frac{3}{\sqrt{x}+1}\)

Vì $\sqrt{x}\geq 0$ với mọi $x\neq 1; x\geq 0$

$\Rightarrow \sqrt{x}+1\geq 1\Rightarrow \frac{3}{\sqrt{x}+1}\leq 3$

$\Rightarrow P\geq 2-3=-1$
Vậy $P_{\min}=-1$. Giá trị này đạt tại $x=0$

 

Music Hana
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 22:14

Để \(P\ge1\) thì \(P-1\ge0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}-1-\sqrt{x}+1}{\sqrt{x}-1}\ge0\)

\(\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-1}\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x>1\end{matrix}\right.\)

Kết hợp ĐKXĐ, ta được: x=0 hoặc x>1

 

Võ Thanh Tùng
Xem chi tiết
Mysterious Person
30 tháng 7 2018 lúc 13:40

mk giải 1 bài lm mẩu nha .

+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)

vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)

vậy giá trị nhỏ nhất của \(A\)\(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)

mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :

Trần Quốc Lộc
30 tháng 7 2018 lúc 15:25

\(A=x-12\sqrt{x}\\ =x-12\sqrt{x}+36-36\\ =\left(\sqrt{x}-6\right)^2-36\ge-36\text{ }\forall x\ge0\)

Vậy \(A_{Min}=-36\text{ }khi\text{ }x=36\)

B tương tự

\(C=\dfrac{\sqrt{x}-5}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3-8}{\sqrt{x}+3}=1-\dfrac{8}{\sqrt{x}+3}\)

\(Do\text{ }\sqrt{x}\ge0\forall x\\ \Rightarrow\sqrt{x}+3\ge3\forall x\\ \Rightarrow\dfrac{8}{\sqrt{x}+3}\le\dfrac{8}{3}\forall x\\ \Rightarrow C=1-\dfrac{8}{\sqrt{x}+3}\ge-\dfrac{5}{3}\forall x\)

Vậy \(C_{Min}=-\dfrac{5}{3}\text{ }khi\text{ }x=0\)

D tương tự

Đạt Nguyễn
Xem chi tiết

a: \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\cdot\left(x+\sqrt{x}\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\left(x+\sqrt{x}\right)\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\cdot\left(\sqrt{x}+1\right)\)

\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\)

\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\)

\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}}{x-1}=\dfrac{2x}{x-1}\)

b: Để Q là số nguyên thì \(2x⋮x-1\)

=>\(2x-2+2⋮x-1\)

=>\(2⋮x-1\)

=>\(x-1\in\left\{1;-1;2;-2\right\}\)

=>\(x\in\left\{2;0;3;-1\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{0;2;3\right\}\)

an hạ
Xem chi tiết
Minh Triều
Xem chi tiết
Trần Thị Loan
9 tháng 10 2015 lúc 19:00

\(A=\frac{x-9+25}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}+\frac{25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}\)

\(A=\left(\sqrt{x}+3\right)+\frac{25}{\sqrt{x}+3}-6\ge2.\sqrt{\left(\sqrt{x}+3\right).\frac{25}{\sqrt{x}+3}}-6=4\)

Dấu "=" xảy ra <=> \(\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\) <=> \(\sqrt{x}+3=5\) <=> x = 4

Vậy....

Music Hana
Xem chi tiết
Akai Haruma
13 tháng 5 2021 lúc 0:15

Lời giải:

\(S-m=\frac{x+\sqrt{x}(1-3m)+m}{3\sqrt{x}-1}\)

Để $S-m=0$ có nghiệm thì PT $x+\sqrt{x}(1-3m)+m=0$ có nghiệm không âm và khác $\frac{1}{9}$

Điều này xảy ra khi:

\(\left\{\begin{matrix} \Delta=(1-3m)^2-4m\geq 0\\ \frac{1}{9}+\frac{1}{3}(1-3m)+m\neq 0\\ S=1-3m\geq 0\\ P=m\geq 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} (m-1)(9m-1)\geq 0\\ 1-3m\geq 0\\ m\geq 0\end{matrix}\right.\left\{\begin{matrix} m\leq \frac{1}{9}\\ m\geq 0\end{matrix}\right.\)

Ahihi
Xem chi tiết
YangSu
17 tháng 8 2023 lúc 10:18

\(a,A=2\sqrt{20}-\dfrac{2}{\sqrt{3}+1}-\sqrt{80}+\sqrt{4+2\sqrt{3}}\\ =2.2\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{\sqrt{3^2}-1}-4\sqrt{5}+\sqrt{\left(\sqrt{3}+1\right)^2}\\ =-\dfrac{2\left(\sqrt{3}-1\right)}{2}+\left|\sqrt{3}+1\right|\\ =-\sqrt{3}+1+\sqrt{3}+1\\ =2\)

\(B=\left(1+\dfrac{x+\sqrt{x}}{1+\sqrt{x}}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\left(dk:x\ge0,x\ne1\right)\\ =\left(1+\dfrac{\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\right)\left(1-\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\\ =1-x\)

\(b,A=4\sqrt{B}\Leftrightarrow4\sqrt{1-x}=2\\ \Leftrightarrow\sqrt{1-x}=\dfrac{1}{2}\\ \Leftrightarrow\left|1-x\right|=\dfrac{1}{4}\)

\(\Leftrightarrow1-x=\dfrac{1}{4}\\ \Leftrightarrow x=\dfrac{3}{4}\left(tm\right)\)

Vậy \(x=\dfrac{3}{4}\) thì \(A=4\sqrt{B}\).

HT.Phong (9A5)
17 tháng 8 2023 lúc 10:19

a) \(A=2\sqrt{20}-\dfrac{2}{\sqrt{3}+1}-\sqrt{80}+\sqrt{4+2\sqrt{3}}\)

\(A=2\cdot2\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}-4\sqrt{5}+\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}\cdot1+1^2}\)

\(A=4\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{2}-4\sqrt{5}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(A=-\left(\sqrt{3}-1\right)+\sqrt{3}+1\)

\(A=-\sqrt{3}+1+\sqrt{3}+1\)

\(A=2\)

\(B=\left(1+\dfrac{x+\sqrt{x}}{1+\sqrt{x}}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\)

\(B=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\)

\(B=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\)

\(B=1^2-\left(\sqrt{x}\right)^2\)

\(B=1-x\)

b) Ta có: \(A=4\sqrt{B}\)

\(\Rightarrow2=4\sqrt{1-x}\)

\(\Leftrightarrow\sqrt{1-x}=\dfrac{1}{2}\)

\(\Leftrightarrow1-x=\dfrac{1}{4}\)

\(\Leftrightarrow x=1-\dfrac{1}{4}\)

\(\Leftrightarrow x=\dfrac{3}{4}\left(tm\right)\)

Music Hana
Xem chi tiết
Yeutoanhoc
13 tháng 5 2021 lúc 19:50

*Max
Xét `P-4`
`=(4\sqrtx+3-4x-4)/(x+1)`
`=(-4x+4\sqrtx-1)/(x+1)`
`=(-(2\sqrtx-1)^2)/(x+1)<=0`
`=>P<=1`
Dấu "=" `<=>2\sqrtx=1<=>x=1/4`
*Min
Xét `P+1`
`=(4\sqrtx+3+x+1)/(x+1)`
`=(x+4\sqrtx+4)/(x+1)`
`=(\sqrtx+2)^2/(x+1)>=0`
`=>P>=-1`
Dấu "=" `<=>\sqrtx+2=0<=>\sqrtx=-2`(vô lý)
=>Không có giá trị nhỏ nhất.