so sánh \(\sqrt{61}\)-\(\sqrt{35}\)và\(\sqrt{61-35}\)
Không dùn máy tính hãy so sánh
a, \(\sqrt{61-35}\)và \(\sqrt{61}-\sqrt{35}\)
Ta có : \(\sqrt{61-35}=\sqrt{26}>\sqrt{25}=5\)(1)
\(\sqrt{61}-\sqrt{35}< \sqrt{64}-\sqrt{36}=8-6=2\)(2)
Từ (1) và (2) ta được : \(\sqrt{61-35}>5>2>\sqrt{61}-\sqrt{35}\)
\(\Rightarrow\sqrt{61-35}>\sqrt{61}-\sqrt{35}\)
Không dùng mtct, hãy so sánh
A=\(\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)và 20
B=\(\sqrt{196}-\dfrac{1}{\sqrt{3}}-1\)và c=\(\sqrt{169}+\dfrac{-1}{\sqrt{2}}\)
M=\(\sqrt{61-35}\)vàN=\(\sqrt{61}-\sqrt{35}\)
\(\text{Rút ra tổng quát của phép so sánh sau :}\)
\(\sqrt{61-35}\)\(\text{và }\)\(\sqrt{61}-\sqrt{35}\)
\(\text{Chú ý : cần giải thích .}\)
Dạng tổng quát: \(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\) với \(a\ge b\ge0\)
Chứng minh:
Ta có: \(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\)
\(\Rightarrow\)\(\left(\sqrt{a-b}\right)^2\ge\left(\sqrt{a}-\sqrt{b}\right)^2\)
\(\Rightarrow\)\(a-b\ge a+b-2\sqrt{ab}\)
\(\Rightarrow\)\(-2b\ge-2\sqrt{ab}\)
\(\Rightarrow\)\(b\le\sqrt{ab}\)
\(\Rightarrow\)\(b^2\le ab\) luôn đúng do \(a\ge b\ge0\)
Vậy \(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b\)
So sánh:
\(\sqrt{10}+\sqrt{17}+1\)và\(\sqrt{61}\)
\(\sqrt{10}+\sqrt{17}+1>\sqrt{9}+\sqrt{16}+1=3+4+1=8\)
\(\sqrt{61}< \sqrt{64}=8\)
Vậy \(\sqrt{10}+\sqrt{17}+1>\sqrt{61}\)
1) so sánh
a) \(\sqrt{33}-\sqrt{17}\) và \(6-\sqrt{15}\)
b) \(4\sqrt{5}\) và \(5\sqrt{3}\)
c) \(\sqrt{3\sqrt{2}}\) và \(\sqrt{2\sqrt{3}}\)
d) \(\sqrt{10}+\sqrt{17}+1\) và \(\sqrt{61}\)
giúp mk vs ah mk cần gấp
b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)
\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)
mà 80>75
nên \(4\sqrt{5}>5\sqrt{3}\)
So sánh
\(\sqrt{48}\) và 13-\(\sqrt{35}\)
Có:\(\sqrt{48}< \sqrt{49}=7\)
\(13-\sqrt{35}>13-\sqrt{36}=7\)
\(\Rightarrow\sqrt{48}< 13-\sqrt{35}\)
\(\sqrt{48}+\sqrt{35}< \sqrt{49}+\sqrt{36}=7+6=13\)
\(\rightarrow\sqrt{48}< 13-\sqrt{35}\)
Ta có:
\(\sqrt{48}< \sqrt{49}=7\left(1\right)\)
\(13-\sqrt{35}>13-\sqrt{36}=13-6=7\left(2\right)\)
Từ (1) và (2) :
Suy ra: \(\sqrt{48}< 13-\sqrt{35}\)
\(\)
so sánh
\(a.3\sqrt{26}\) và 15
\(b.-5\sqrt{35}\) và 30
c.\(\sqrt{34-10\sqrt{3}}\) và 5-\(\sqrt{3}\)
d.\(\sqrt{16+225}\) và \(\sqrt{16}+\sqrt{225}\)
so sánh các số sau : \(a=\dfrac{35}{49};b=\sqrt{\dfrac{5^2}{7^2}};c=\dfrac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}};d=\dfrac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)
\(\left\{{}\begin{matrix}a=\dfrac{35}{49}=\dfrac{5}{7}\\b=\sqrt{\dfrac{5^2}{7^2}}=\dfrac{5}{7}\\c=\dfrac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\dfrac{5+35}{7+49}=\dfrac{5}{7}\\d=\dfrac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\dfrac{5-35}{7-49}=\dfrac{5}{7}\end{matrix}\right.\)
\(\Rightarrow a=b=c=d=\dfrac{5}{7}\)
\(a=\dfrac{35}{49};b=\dfrac{5}{7}\\ c,=\dfrac{5+35}{7+49}=\dfrac{12}{14}=\dfrac{6}{7}\\ d,=\dfrac{5-35}{7-49}\)
Áp dụng t/c dtsbn:
\(\dfrac{5}{7}=\dfrac{35}{49}=\dfrac{5+35}{7+49}=\dfrac{5-35}{7-49}\) hay \(a=b=c=d\)
so sánh giúp mk nha
\(\sqrt{27}+\sqrt{6}và\sqrt{35}\)
\(\sqrt{27}\) + \(\sqrt{6}\)> \(\sqrt{35}\)
căn 27 + căn 6 = 7,196156423
căn 35 = 5,916079783
=>căn 27 + căn 6 > căn 35
Ta có: \(\sqrt{27}+\sqrt{6}=\sqrt{6}+3\sqrt{3}=7,64...\)
Và: \(\sqrt{35}=5,91\)
Vì \(7,64>5,91\)
Vậy \(\sqrt{27}+3\sqrt{3}>\sqrt{35}\)
Ủng hộ mik nha!