Cho a, b, c ≠ 0 và a + b + c = \(\dfrac{a+2b-c}{c}=\dfrac{b+2c-a}{a}=\dfrac{c+2a-b}{b}\)
Bài 5: cho a,b,c lớn hơn 0
chứng minh rẳng:
\(2\left(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\right)\ge1+\dfrac{b}{b+2a}+\dfrac{c}{c+2b}+\dfrac{a}{a+2c}\)
\(2\left(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\right)\ge1+\dfrac{b}{b+1a}+\dfrac{c}{c+2b}+\dfrac{a}{a+2c}\)
\(\Leftrightarrow2\left(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}+\dfrac{a}{b+2a}+\dfrac{b}{c+2b}+\dfrac{c}{a+2c}\right)\ge1+\dfrac{b+2a}{b+2a}+\dfrac{c+2b}{c+2b}+\dfrac{a+2c}{a+2c}=1+1+1+1=4\)Thật vậy:
\(\dfrac{a}{b+2c}+\dfrac{a}{b+2a}+\dfrac{b}{c+2a}+\dfrac{b}{c+2b}+\dfrac{c}{a+2b}+\dfrac{c}{a+2c}=a\left(\dfrac{1}{b+2c}+\dfrac{1}{b+2a}\right)+b\left(\dfrac{1}{c+2a}+\dfrac{1}{c+2b}\right)+c\left(\dfrac{1}{a+2b}+\dfrac{1}{a+2c}\right)\)
\(\ge\dfrac{4a}{2\left(a+b+c\right)}+\dfrac{4b}{2\left(a+b+c\right)}+\dfrac{4c}{2\left(a+b+c\right)}=2\)
\(\Rightarrow VT\ge2.2=4\)
\(\RightarrowĐPCM\)
Cho a,b,c khác 0 thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính \(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-c^2a^2}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
=> bc+ac+ab=0
ta có
\(bc+ac=-ab\)
<=> \(\left(bc+ac\right)^2=a^2b^2\)
<=> \(b^2c^2+a^2c^2+2abc^2=a^2b^2\)
<=> \(b^2c^2+a^2c^2-a^2b^2=-2abc^2\)
tương tự
\(a^2b^2+b^2c^2-c^2a^2=-2ab^2c\)
\(c^2a^2+a^2b^2-b^2c^2=-2a^2bc\)
thay vào E ta đc
\(E=\dfrac{-a^2b^2c^2}{2ab^2c}-\dfrac{a^2b^2c^2}{2abc^2}-\dfrac{a^2b^2c^2}{2a^2bc}\)
=\(-\dfrac{ac}{2}-\dfrac{ab}{2}-\dfrac{bc}{2}=\dfrac{-\left(ac+ab+bc\right)}{2}=0\) (vì ac+bc+ab=0 cmt)
a, a,b,c>0. CMR:\(\dfrac{ab}{a+b+2c}+\dfrac{bc}{b+c+2a}+\dfrac{ac}{a+c+2b}\le\dfrac{a+b+c}{4}\)
b, a,b,c>0. CMR:\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{a+b+c}{6}\)
a.
\(\sum\dfrac{ab}{a+c+b+c}\le\dfrac{1}{4}\sum\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)=\dfrac{a+b+c}{4}\)
2.
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{a+b+2c+2b}\le\dfrac{ab}{9}\left(\dfrac{4}{a+b+2c}+\dfrac{1}{2b}\right)=4.\dfrac{ab}{a+b+2c}+\dfrac{a}{18}\)
Quay lại câu a
\(b,\dfrac{ab}{a+3b+2c}=\left(\dfrac{1}{9}ab\right)\cdot\dfrac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\left(\dfrac{1}{9}ab\right)\cdot\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)=\dfrac{1}{9}\cdot\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Cmtt: \(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\cdot\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+b}+\dfrac{b}{2}\right);\dfrac{ca}{c+3a+2b}\le\dfrac{1}{9}\cdot\left(\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{c}{2}\right)\)
\(\Rightarrow VT\le\dfrac{1}{9}\left(\dfrac{bc+ca}{a+b}+\dfrac{ab+ac}{b+c}+\dfrac{ab+bc}{a+c}+\dfrac{a+b+c}{2}\right)\\ \le\dfrac{1}{9}\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{9}\cdot\dfrac{3}{2}\left(a+b+c\right)=\dfrac{a+b+c}{6}\)
Dấu $"="$ khi $a=b=c$
Cho a,b,c>0 và dãy tỉ số\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính P = \(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Leftrightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\text{ và }\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Leftrightarrow P=\dfrac{a\cdot b\cdot c}{2a\cdot2b\cdot3c}=\dfrac{1}{8}\)
Cho \(\dfrac{a}{2b+c}=\dfrac{b}{2c+a}=\dfrac{c}{2a+b}\left(a;b;c>0\right)\)
Tính:\(\dfrac{2b+c}{a}+\dfrac{2c+a}{b}+\dfrac{2a+b}{c}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b} =\frac{a+b+c}{3(a+b+c)}=\frac{1}{3} \)
=>a=3(2b+c)
=>b=3(2c+a)
=>c=3(2a+b)
=> A=\(\frac{2b+c}{a}+\frac{2c+a}{b}+\frac{2a+b}{c}=\frac{2b+c}{3(2b+c)} +\frac{2c+a}{3(2c+a)}+\frac{2a+b}{3(2a+b)} \)=\(\frac{1}{3}+\frac{1}3{}+\frac{1}3{} \)=1
Cho \(\dfrac{a}{2a+b+c}+\dfrac{b}{2b+a+c}+\dfrac{c}{2c+a+b}=1\)
Tính \(\dfrac{a^2}{2a+b+c}+\dfrac{b^2}{2b+a+c}+\dfrac{c^2}{2c+a+b}\)
Cho a, b, c > 0 . CMR :
\(\dfrac{a^3}{\left(2a+b\right)\left(2b+c\right)}+\dfrac{b^3}{\left(2b+c\right)\left(2c+a\right)}+\dfrac{c^3}{\left(2c+a\right)\left(2a+b\right)}\le\dfrac{a+b+c}{9}\)
Dấu >= hay <= vậy bạn? Bạn xem lại đề.
Cho a, b, c >0 và dãy tỉ số \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính giá trị của biểu thức P=\(\dfrac{\left(2a-b\right)\left(2b-c\right)\left(2c-a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2b+2c+2a}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\dfrac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\Rightarrow2b=3a-c\)\(\dfrac{2c-b+a}{b}=2\Rightarrow2c-b+a=2b\Rightarrow2c=3b-a\)
\(\dfrac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\Rightarrow2a=3c-b\)
\(P=\dfrac{\left(2a-b\right)\left(2b-c\right)\left(2c-a\right)}{2a.2b.2c}=\dfrac{\left(2a-b\right)\left(2b-c\right)\left(2c-a\right)}{8abc}\)
Cho a, b, c \(\ne\)0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}=0\). Tính \(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-a^2c^2}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}.\)
Hình như sai đề :
Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=0\)
\(\Leftrightarrow\dfrac{ab+ac+bc}{abc}=0\)
\(\Leftrightarrow ab+ac+bc=0\) ( do \(a;b;c\ne0\) ) ( 1 )
Từ ( 1 ) \(\Rightarrow ab+bc=-ac\)
\(\Rightarrow\left(ab+bc\right)^2=\left[-\left(ac\right)\right]^2\)
\(\Rightarrow a^2b^2+b^2c^2+2ab^2c=a^2c^2\) ( * )
CMTT , ta được : \(\left\{{}\begin{matrix}b^2c^2+c^2a^2+2bc^2a=a^2b^2\\c^2a^2+a^2b^2+2a^2cb=b^2c^2\end{matrix}\right.\) ( *' )
Thay ( * ) và ( * ') vào E , ta được :
\(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-\left(a^2b^2+b^2c^2+2b^2ac\right)}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-\left(b^2c^2+c^2a^2+2bc^2a\right)}\)
\(+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-\left(c^2a^2+a^2b^2+2a^2cb\right)}\)
\(=\dfrac{a^2b^2c^2}{-2b^2ac}+\dfrac{a^2b^2c^2}{-2c^2ab}+\dfrac{a^2b^2c^2}{-2a^2cb}\)
\(=\dfrac{-ac}{2}+\dfrac{-ab}{2}+\dfrac{-bc}{2}\)
\(=\dfrac{-\left(ac+ab+bc\right)}{2}\)
\(=\dfrac{0}{2}=0\)
Vậy \(E=0\)