Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 10 2017 lúc 6:55

a, A =  5 + 5 2 + 5 3 + . . . + 5 8

= 5(1+5)+ 5 2 (1+5)+ 5 3 (1+5)+...+ 5 7 (1+5)

= 30+5.30+ 5 2 .30+...+ 5 6 .30

= 30.(1+5+ 5 2 +..+ 5 6 )

Vậy A là bội của 30

b, B =  3 + 3 3 + 3 5 + 3 7 + . . . + 3 29

= 3 1 + 3 2 + 3 4 + 3 7 1 + 3 2 + 3 4 +...+ 3 27 1 + 3 2 + 3 4

= 273+273. 3 6 +...+ 3 26 .273

= 273.(1+ 3 6 +...+ 3 26 )

Vậy B là bội của 273

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 10 2017 lúc 11:56

Phương Linh
Xem chi tiết
Võ Ngọc Phương
5 tháng 8 2023 lúc 8:53

Sửa câu a

a)Ta có:

\(A=3+3^2+3^3+...+3^{99}\)

 \(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\) 

\(A=\left(3+3^2+3^3\right)+...+3^{96}.\left(3+3^2+3^3\right)\)

\(A=39+...+3^{96}.39\)

\(A=39.\left(1+...+3^{96}\right)\)

Vì 39 \(⋮\) 13 nên 39 . ( 1 + ... + 396 ) \(⋮\) 13

Vậy A \(⋮\) 13

_________

b)Ta có:

 \(B=5+5^2+5^3+...+5^{50}\)

\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{49}+5^{50}\right)\)

\(B=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^{48}.\left(5+5^2\right)\)

\(B=30+5^2.30+...+5^{48}.30\)

\(B=30.\left(1+5^2+...+5^{48}\right)\)

Vì 30 \(⋮\) 6 nên 30. ( 1 + 52 + ... + 548 ) \(⋮\) 6

Vậy B \(⋮\) 6

Trần đình hoàng
5 tháng 8 2023 lúc 8:46

a,A=3+32+33+..+399=(3+32+33)+...+(397+398+399)

     =3(1+3+32)+...+397(1+3+32)=3x13+...+397x13=13(3+...+97)⋮13

b,B=5+52+...+550=(5+52)+...+(549+550)=5(1+5)+..+549(1+5)

  =5x6+...+549x6=6(5+..+549)⋮6.

Nguyễn Thị Thùy Trâm
Xem chi tiết
Nguyễn Thị Thùy Trâm
10 tháng 12 2019 lúc 23:15

Câu d là 3 + 32 + 33 + 34 + 35+ 36 + 37 + .... + 360 chia hết cho 4 nhé! Viết vội quá nên quên bucminh, sorry

Khách vãng lai đã xóa
KẺ_BÍ ẨN
2 tháng 2 2021 lúc 21:39

d) (3+32)+(33+34)+(35+36)+...+(359+360)

= 3.(1+3)+33.(1+3)+35.(1+3)+...+359(1+3)

= 3.4+33.4+35.4+...+359.4

= 4.(3+33+35+...+359) chia hết cho 4

Vậy 3+32+33+34+35+36+37+...+360 chia hết cho 4

 

KẺ_BÍ ẨN
3 tháng 2 2021 lúc 8:49

b) Ta có: 6100-1

= 699.6-1

= 699.(6-1)

= 699.5

Vì 699. 5 chia hết cho 5 nên 6100-1 chia hết cho 5

Vậy 6100-1 chia hết cho 5

Nguyễn Lê Hoàng Bách
Xem chi tiết
Toru
29 tháng 10 2023 lúc 20:20

\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\\=(3+3^2)+(3^3+3^4)+(3^5+3^6)+(3^7+3^8)\\=3\cdot(1+3)+3^3\cdot(1+3)+3^5\cdot(1+3)+3^7\cdot(1+3)\\=3\cdot4+3^3\cdot4+3^5\cdot4+3^7\cdot4\\=4\cdot(3+3^3+3^5+3^7)\)

Vì \(4\cdot(3+3^3+3^5+3^7) \vdots 4\)

nên \(B\vdots4\).

『Kuroba ム Tsuki Ryoo...
29 tháng 10 2023 lúc 20:21

`#3107.101107`

\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+\left(3^7+3^8\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+3^7\left(1+3\right)\)

\(=\left(1+3\right)\left(3+3^3+3^5+3^7\right)\)

\(=4\left(3+3^3+3^5+3^7\right)\)

Vì \(4\left(3^3+3^5+3^7\right)\) $\vdots 4$

`\Rightarrow B \vdots 4`

Vậy, `B \vdots 4.`

talent
29 tháng 10 2023 lúc 20:22

B=3+32+33+34+35+36+37+38=(3+32)+(33+34)+(35+36)+(37+38)=3(1+3)+33(1+3)+35(1+3)+37(1+3)=34+334+354+374=4(3+33+35+37)

Vì 4⋅(3+33+35+37)⋮4

nên �⋮4.

nglan
Xem chi tiết
nglan
17 tháng 12 2021 lúc 21:09

Các bạn giúp mình nhé

Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 0:21

\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)

Hồng Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 11:51

\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)

\(=13\left(1+...+3^7\right)⋮13\)

Minh Quang 6a Đỗ
Xem chi tiết
Kudo Shinichi
23 tháng 12 2021 lúc 18:36

\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)

\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)

\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)

\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)

\(S=4\left(3^2+3^4+3^6+3^8\right)\)

\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)

Hoàng Khánh Chi
Xem chi tiết
Akai Haruma
18 tháng 11 2021 lúc 21:49

Lời giải:
a. Ta thấy:

$3+3^2+3^3+...+3^{99}\vdots 3$

$1\not\vdots 3$

$\Rightarrow A=1+3+3^2+...+3^{99}\not\vdots 3$

$\Rightarrow A\not\vdots 9$

b.

$A=(5+5^2)+(5^3+5^4)+...+(5^{39}+5^{40})$

$=5(1+5)+5^3(1+5)+...+5^{39}(1+5)$

$=5.6+5^3.6+....+5^{39}.6$

$=6(5+5^3+...+5^{39})$

$=2.3.(5+5^3+...+5^{39})$

$\Rightarrow A\vdots 2$ và $A\vdots 3$

Bảo Gia
Xem chi tiết
Đoàn Trần Quỳnh Hương
22 tháng 12 2022 lúc 14:12

loading...

Thầy Hùng Olm
22 tháng 12 2022 lúc 14:45

\(S=1.\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)

\(S=4x\left(1+3^2+...+3^8\right)\)

Vì 4 chia hết cho 4 nên S chia hết cho 4