a) 2x+2x+3=144
b) 72x+72x+2=2450
Tìm x:
a) 2x + 2 - 3 . 2x = 32
b) (4x - 3)2 = 4x - 3
c) 72x + 72x + 3 = 344
d) (7x - 3)2012 = (3 - 7x)2010
e) (4x2 - 3)3 + 8 = 0
a: =>2^x*4-2^x*3=32
=>2^x=32
=>x=5
b: =>(4x-3)^2-(4x-3)=0
=>(4x-3)(4x-3-1)=0
=>(4x-3)(4x-4)=0
=>x=3/4 hoặc x=1
c: =>7^2x+7^2x*7^3=344
=>7^2x=1
=>2x=0
=>x=0
d: =>(7x-3)^2012-(7x-3)^2010=0
=>(7x-3)^2010*[(7x-3)^2-1]=0
=>(7x-3)^2010*(7x-4)(7x-2)=0
=>x=2/7; x=4/7; x=3/7
e: =>(4x^2-3)^3=-8
=>4x^2-3=-2
=>4x^2=1
=>x^2=1/4
=>x=1/2 hoặc x=-1/2
a) 2x(22 - 3) = 32
2x.1=25
=> x = 5
b) (4x - 3)2 = 4x -3
=> (4x - 3)2 - (4x - 3) = 0
(4x-3)[(4x - 3) - 1] = 0
(4x-3)(4x - 4)=0
\(\Rightarrow\left[{}\begin{matrix}4x-3=0\\4x-4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=1\end{matrix}\right.\)
c) 72x + 72x+3 = 344
=> 72x(1 + 73) =344
72x . 344 = 344
=> 2x = 0 => x = 0
d) (7x - 3)2012 = (3 - 7x)2010
=> (7x - 3)2012 - (7x - 3)2010 = 0
(7x - 3)2010 [(7x - 3)2 - 1] = 0
\(\Rightarrow\left[{}\begin{matrix}7x-3=0\\\left(7x-3\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{7}\\7x=4\\7x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{7}\\x=\dfrac{4}{7}\\x=\dfrac{2}{7}\end{matrix}\right.\)
e) (4x2 - 3)3 + 8 = 0
(4x2 - 3)3 = (-2)3
=> 4x2 - 3 = -2
4x2 = 1
x2 = 1/4
=> \(x=\pm\dfrac{1}{2}\)
72x+72x+3=344 (5-x)(9x2-4)=0 \(\left|2-2x\right|\)-3,75=(-0,5)2
\(\sqrt{x-1}\)+\(\dfrac{2}{3}\)=1 (\(\dfrac{1}{3}\)-\(\dfrac{3}{2}\)x)2=2\(\dfrac{1}{4}\) giúp mình với!!!! cảm ơn nhìu=))❤
(5 - \(x\))(9\(x^2\) - 4) =0
\(\left[{}\begin{matrix}5-x=0\\9x^2-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\9x^2=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x^2=\dfrac{4}{9}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=-\dfrac{2}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) { - \(\dfrac{2}{3}\); \(\dfrac{2}{3}\); \(5\)}
72\(x\) + 72\(x\) + 3 = 344
72\(x\) \(\times\) ( 1 + 73) = 344
72\(x\) \(\times\) (1 + 343) = 344
72\(x\) \(\times\) 344 = 344
72\(x\) = 344 : 344
72\(x\) = 1
72\(x\) = 70
\(2x\) = 0
\(x\) = 0
Kết luận: \(x\) = 0
|2 - 2\(x\)| - 3,75 = (-0,5)2
|2 - 2\(x\)| - 3,75 = 0,25
|2- 2\(x\)| =0,25 + 3,75
|2 - 2\(x\)| = 4
\(\left[{}\begin{matrix}2-2x=-4\left(x>1\right)\\2-2x=4\left(x< 1\right)\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=6\left(x\ge1\right)\\2x=-2\left(x\le1\right)\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Kết luận: \(x\) \(\in\) { -1; 3}
Tìm x, biết:
a) 2-x=2(x-2)3 b) 8x3-72x=0
d) 2x3+3x2+3+2x=0
a: Ta có: \(2\left(x-2\right)^3=2-x\)
\(\Leftrightarrow2\left(x-2\right)^3+x-2=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
b: ta có: \(8x^3-72x=0\)
\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
c: Ta có: \(2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow2x+3=0\)
hay \(x=-\dfrac{3}{2}\)
Giải phương trình sau : 72x^3+102x^2-18x-36=(2x+1+\(\sqrt{ }\)x+4)(2x-13+(\(\sqrt{ }\)x -1)(36x-1
Rút gọn biểu thức sau với x \(\ge\) 0
a) \(3\sqrt{2x}-4\sqrt{2x}+8-2\sqrt{x}\)
b) \(3\sqrt{2x}-\sqrt{72x}+3\sqrt{18x}+18\)
a) \(3\sqrt{2x}-4\sqrt{2x}+8-2\sqrt{x}\)
\(=-\left(4\sqrt{2x}-3\sqrt{2x}\right)+8-2\sqrt{x}\)
\(=-\sqrt{2x}-2\sqrt{x}+8\)
b) \(3\sqrt{2x}-\sqrt{72x}+3\sqrt{18x}+18\)
\(=3\sqrt{2x}-6\sqrt{2x}+3\cdot3\sqrt{2x}+18\)
\(=3\sqrt{2x}-6\sqrt{2x}+9\sqrt{2x}+18\)
\(=\left(3+9-6\right)\sqrt{2x}+18\)
\(=6\sqrt{2x}+18\)
bài 1 tìm x
a)6x^2-72x=0
b)-2x^4+16x=0
c)x(x-5)-(x-3)^2=0
d)(x-2)^3-(x-2)(x^2+2x+4)=0
a) \(6x^2-72x=0\)
\(6x\left(x-12\right)=0\)
\(6x=0\) hoặc \(x-72=0\)
*) \(6x=0\)
\(x=0\)
*) \(x-12=0\)
\(x=12\)
Vậy \(x=0;x=12\)
b) \(-2x^4+16x=0\)
\(-2x\left(x^3-8\right)=0\)
\(-2x=0\) hoặc \(x^3-8=0\)
*) \(-2x=0\)
\(x=0\)
*) \(x^3-8=0\)
\(x^3=8\)
\(x=2\)
Vậy \(x=0;x=2\)
c) \(x\left(x-5\right)-\left(x-3\right)^2=0\)
\(x^2-5x-x^2+6x-9=0\)
\(x-9=0\)
\(x=9\)
d) \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)=0\)
\(x^3-6x^2+12x-8-x^3+8=0\)
\(-6x^2+12x=0\)
\(-6x\left(x-2\right)=0\)
\(-6x=0\) hoặc \(x-2=0\)
*) \(-6x=0\)
\(x=0\)
*) \(x-2=0\)
\(x=2\)
Vậy \(x=0;x=2\)
a, 2x^3-72x=0
b, ( x+5 ) ( x-5) - (x-4)^2 = 7
c, x^3 - 6x^3 + 12x -8 =0
d, 2x^2 + 5x-7 = 0
e, ( x+2 )^2 - ( x+3) ( x-3) = 5
mong bn giải chi tiết giúp mik vs ạ
d) \(2x^2+5x-7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\) \(\left(a+b+c=1\right)\)
\(\sqrt{8x}\)-\(\sqrt{72x}\)+10=\(\sqrt{2x}\)
\(\Leftrightarrow2\sqrt{2x}-6\sqrt{2x}-\sqrt{2x}=-10\)
\(\Leftrightarrow5\sqrt{2x}=10\)
=>2x=4
hay x=2
Tìm ĐKXĐ:
a) \(\sqrt{72x}\)
b) \(\dfrac{2x+3}{\sqrt{x^2-4}}\)
c) \(\sqrt{\left(2x+1\right)\left(x+2\right)}\)
d) \(3-\sqrt{16x^2-1}\)
e) \(\sqrt{\dfrac{3+x}{4-x}}\)
\(a,\sqrt{72x}\) xác định \(\Leftrightarrow72x\ge0\Leftrightarrow x\ge0\)
\(b,\dfrac{2x+3}{\sqrt{x^2-4}}\) xác định \(\Leftrightarrow x^2-4>0\Leftrightarrow\left(x-2\right)\left(x+2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x+2>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>-2\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< -2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\)
\(c,\sqrt{\left(2x+1\right)\left(x+2\right)}\) xác định \(\Leftrightarrow\left(2x+1\right)\left(x+2\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}2x+1\ge0\\x+2\ge0\end{matrix}\right.\\\left[{}\begin{matrix}2x+1\le0\\x+2\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\ge-2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{1}{2}\\x\le-2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\le-2\end{matrix}\right.\)
\(d,3-\sqrt{16x^2-1}\) xác định \(\Leftrightarrow16x^2-1\ge0\Leftrightarrow\left(4x-1\right)\left(4x+1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}4x-1\ge0\\4x+1\ge0\end{matrix}\right.\\\left[{}\begin{matrix}4x-1\le0\\4x+1\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{1}{4}\\x\ge-\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}x\le\dfrac{1}{4}\\x\le-\dfrac{1}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{1}{4}\\x\le-\dfrac{1}{4}\end{matrix}\right.\)
\(e,\sqrt{\dfrac{3+x}{4-x}}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}3+x\ge0\\4-x>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge-3\\x>4\end{matrix}\right.\) \(\Leftrightarrow x>4\)
Bài 1. Phân tích các đa thức sau thành nhân tử:
a) 8x3-2x c) -5m3(m+1)+m+1
Bài 7. Tìm x, biết:
a) 2-x=2(x-2)3 b) 8x3-72x=0
d) 2x3+3x2+3+2x=0
Bài 1:
a: \(8x^3-2x=2x\left(4x^2-1\right)=2x\left(2x-1\right)\left(2x+1\right)\)
c: \(-5m^3\left(m+1\right)+m+1=\left(m+1\right)\left(-5m^3+1\right)\)