Tính :\(\sqrt{2}+\sqrt[3]{3}+\sqrt[4]{4}+...+\sqrt[9]{9}\)
Tính: \(B=\frac{\sqrt[3]{9}-\sqrt{2}}{\sqrt[3]{3}+\sqrt[4]{2}}+\frac{\sqrt{2}-9\sqrt[3]{9}}{\sqrt[4]{2}-3\sqrt{81}}\)
Tính :
\(B=\frac{\sqrt[3]{9}-\sqrt{2}}{\sqrt[3]{3}+\sqrt[4]{2}}+\frac{\sqrt{2}-9\sqrt[3]{9}}{\sqrt[4]{2}-3\sqrt{81}}\)
Thực hiện phép tính (rút gọn biểu thức)
a) \(\sqrt{9+4\sqrt{5}}\) - \(\sqrt{9-4\sqrt{5}}\)
b) \(\sqrt{12-6\sqrt{3}}\) + \(\sqrt{12+6\sqrt{3}}\)
c) \(\sqrt{6\sqrt{2}+11}\) - \(\sqrt{11-6\sqrt{2}}\)
Lời giải:
a.
\(=\sqrt{5+2.2\sqrt{5}+2^2}-\sqrt{5-2.2\sqrt{5}+2^2}\)
$=\sqrt{(\sqrt{5}+2)^2}-\sqrt{(\sqrt{5}-2)^2}$
$=|\sqrt{5}+2|-|\sqrt{5}-2|=(\sqrt{5}+2)-(\sqrt{5}-2)=4$
b.
$=\sqrt{3-2.3\sqrt{3}+3^2}+\sqrt{3+2.3.\sqrt{3}+3^2}$
$=\sqrt{(\sqrt{3}-3)^2}+\sqrt{(\sqrt{3}+3)^2}$
$=|\sqrt{3}-3|+|\sqrt{3}+3|$
$=(3-\sqrt{3})+(\sqrt{3}+3)=6$
c.
$=\sqrt{2+2.3\sqrt{2}+3^2}-\sqrt{2-2.3\sqrt{2}+3^2}$
$=\sqrt{(\sqrt{2}+3)^2}-\sqrt{(\sqrt{2}-3)^2}$
$=|\sqrt{2}+3|-|\sqrt{2}-3|$
$=(\sqrt{2}+3)-(3-\sqrt{2})=2\sqrt{2}$
Cho biểu thức \(P=x^3+y^3-3\left(x+y\right)+2021\). Tính giá trị biểu thức P với :
\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
và \(y=\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
Cho biểu thức P=\(x^3+y^3-3\left(x+y\right)+1993\) . Tính giá trị biểu thức P với : \(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\) và \(y=\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\)
\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\\ \Leftrightarrow x^3=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\\ \Leftrightarrow x^3=18+3x\sqrt[3]{81-80}=18-3x\\ \Leftrightarrow x^3-3x=18\\ y=\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\\ \Leftrightarrow y^3=6+3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\left(\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\right)\\ \Leftrightarrow y^3=6+3y\sqrt[3]{9-8}=6+3y\\ \Leftrightarrow y^3-3y=6\\ \Leftrightarrow P=x^3+y^3-3\left(x+y\right)+1993\\ P=x^3+y^3-3x-3y+1993=18+6+1993=2017\)
Áp dụng: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+b^3+3ab\left(a+b\right)\)
\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(\Rightarrow x^3=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\)
\(=18+3\sqrt[3]{81-80}.x=18+3x\)
\(y=\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\)
\(\Rightarrow y^3=3-2\sqrt{2}+3+2\sqrt{2}+3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\left(\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\right)\)
\(=6+3\sqrt[3]{9-8}y=6+3y\)
\(P=x^3+y^3-3\left(x+y\right)+1993\)
\(=18+3x+6+3y-3x-3y+1993=2017\)
tính ;\(\sqrt{2-\sqrt[3]{3+\sqrt[4]{4-\sqrt[5]{5+\sqrt[6]{6-\sqrt[7]{7+\sqrt[8]{8-\sqrt[9]{9}}}}}}}}\)
Mình dùng máy casio nhé bạn.
KQ; 0,6151214812.
Bạn có cần cách làm không?
Bài 3: Thực hiện các phép tính sau:
a) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
b) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
c) \(\sqrt{6-4\sqrt{2}}+\)\(\sqrt{22-12\sqrt{2}}\)
hộ mk với
a) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(=2\sqrt{5}+2+\sqrt{5}-2\)
\(=3\sqrt{5}\)
b) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
\(=3-2\sqrt{2}+2\sqrt{2}-1\)
=2
c) \(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)
\(=2-\sqrt{2}+3\sqrt{2}-2\)
\(=2\sqrt{2}\)
tính
c. \(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
d. \(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(c,\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\\ =\sqrt{\sqrt{3^2}+2\sqrt{3}.1+1}+\sqrt{\sqrt{3^2}-2\sqrt{3}.1+1}\\ =\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\\ =\sqrt{3}+1+\sqrt{3}-1\\ =2\sqrt{3}\)
\(d,\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\\ =\sqrt{\sqrt{5^2}+2.2\sqrt{5}+2^2}-\sqrt{\sqrt{5^2}-2.2\sqrt{5} +2^2}\\ =\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\\ =\sqrt{5}+2-\sqrt{5}+2\\ =4\)
tính:
a,\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
b,\(\sqrt{7-4\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
c,\(\dfrac{x-49}{\sqrt{x}-7}\)
d,\(\sqrt{4+2\sqrt{3}}-\sqrt{13+4\sqrt{3}}\)
e,\(2+\sqrt{17-4\sqrt{9+4\sqrt{45}}}\)
`a)\sqrt{9-4sqrt5}-sqrt5`
`=sqrt{5-2.2sqrt5+4}-sqrt5`
`=sqrt{(sqrt5-2)^2}-sqrt5`
`=|\sqrt5-2|-sqrt5`
`=sqrt5-2-sqrt5=-2`
`b)\sqrt{7-4sqrt3}+sqrt{4-2sqrt3}`
`=\sqrt{4-2.2sqrt3+3}+\sqrt{3-2sqrt3+1}`
`=sqrt{(2-sqrt3)^2}+sqrt{(sqrt3-1)^2}`
`=|2-sqrt3|+|sqrt3-1|`
`=2-sqrt3+sqrt3-1=1`
`c)(x-49)/(sqrtx-7)(x>=0,x ne 49)`
`=((sqrtx-7)(sqrtx+7))/(sqrtx-7)`
`=sqrtx+7`
`d)\sqrt{4+2\sqrt3}-\sqrt{13+4sqrt3}`
`=\sqrt{3+2sqrt3+1}-\sqrt{12+2.2sqrt3+1}`
`=sqrt{(sqrt3+1)^2}-\sqrt{(2sqrt3+1)^2}`
`=sqrt3+1-2sqrt3-1=-sqrt3`
`e)2+sqrt{17-4sqrt{9+4sqrt{45}}}`(câu này hơi sai)