Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dũng Đặng
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2021 lúc 22:18

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

Trần Khánh Châu
Xem chi tiết
ngAsnh
31 tháng 8 2021 lúc 15:39

\(A=-x^2-4y^2+2x-12y-10\)

\(A=-\left(x^2-2x+1\right)-\left(4y^2-12y+9\right)\)

\(A=-\left(x-1\right)^2-\left(2y+3\right)^2\)

Vậy\(A_{max}=0\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 23:48

Ta có: \(-x^2+2x-4y^2-12y-10\)

\(=-\left(x^2-2x+1+4y^2+12y+9\right)\)

\(=-\left(x-1\right)^2-\left(2y+3\right)^2\le0\forall x,y\)

Dấu '=' xảy ra khi \(\left(x,y\right)=\left(1;-\dfrac{3}{2}\right)\)

19.8A Trà My
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 12 2021 lúc 20:31

Bài 1: 

\(A=x^2+6x+9+x^2-10x+25\)

\(=2x^2+4x+34\)

\(=2\left(x^2+2x+17\right)\)

\(=2\left(x+1\right)^2+32>=32\forall x\)

Dấu '=' xảy ra khi x=-1

Đinh Cẩm Tú
Xem chi tiết
Akai Haruma
11 tháng 1 2021 lúc 19:08

Lời giải:

a)

$A=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$Vì $(x+4)^2\geq 0$ nên $A=21-(x+4)^2\leq 21$

Vậy GTLN của $A$ là $21$. Giá trị này đạt tại $x+4=0\Leftrightarrow x=-4$

b) 

$B=5-x^2+2x-4y^2-4y=5-(x^2-2x)-(4y^2+4y)$

$=7-(x^2-2x+1)-(4y^2+4y+1)$

$=7-(x-1)^2-(2y+1)^2$

Vì $(x-1)^2\geq 0; (2y+1)^2\geq 0$ với mọi $x,y$ nên $B=7-(x-1)^2-(2y+1)^2\leq 7$Vậy GTLN của $B$ là $7$ tại $x=1; y=\frac{-1}{2}$

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 8 2019 lúc 8:18

a) x ≠ 0 ,    x ≠     − 2  

b) Ta có D = x 2  - 2x - 2.

c) Chú ý D = - x 2 - 2x - 2 = - ( x   +   1 ) 2  - 1 ≤ -1. Từ đó tìm được giá trị lớn nhất của D = -1 khi x = -1.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 7 2018 lúc 13:02

Lan Anh Vũ Hoàng
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 11 2021 lúc 15:17

Bạn nên sửa lại đề là tìm GTNN

\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+y^2+4y+4+15\\ A=\left(x-y+1\right)^2+\left(y+2\right)^2+15\ge15\\ A_{min}=15\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)

Vậy GTNN của A là 15

Nguyễn Mai Anh
Xem chi tiết

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 9:35

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

Vũ Ngọc Thảo Nguyên
Xem chi tiết