Cho biểu thức A= (\(\dfrac{x}{x^2-36}\)-\(\dfrac{x-6}{x^2+6x}\)):\(\dfrac{2x-6}{x^2+6x}\)+\(\dfrac{x}{6-x}\)
a) Tìm điều kiện x để A xác định
b) CMR giá trị của A không phụ thuộc vào mọi x trong tập xác định của A
Tìm điều kiện x để giá trị của biểu thức được xác định và chứng minh rằng với điều kiện đó, biểu thức không phụ thuộc vào biến :
a) \(\dfrac{x-\dfrac{1}{x}}{\dfrac{x^2+2x+1}{x}-\dfrac{2x+2}{x}}\)
b) \(\dfrac{\dfrac{x}{x+1}+\dfrac{1}{x-1}}{\dfrac{2x+2}{x-1}-\dfrac{4x}{x^2-1}}\)
c) \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}.\left(\dfrac{x}{x^2-2x+1}-\dfrac{1}{x^2-1}\right)\)
d) \(\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)
Cho biểu thức A= (x/x2-36-x-6/x2+6x): 2x-6/x2+6x + x/6x
a) Tìm điều kiện của x để A xác định
b) Chứng minh rằng A không phụ thuộc vào x thuộc điều kiện xác định
Cho biểu thức:
B = (\(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\)) : (\(1-\dfrac{x-3}{x+1}\))
a) Tìm điều kiện của x để giá trị của biểu thức được xác định
b) Tính giá trị của biểu thức B với x = 2005
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(B=\left(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(1-\dfrac{x-3}{x+1}\right)\)
\(=\left(\dfrac{x-1}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(\dfrac{x+1-x-3}{x+1}\right)\)
\(=\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{-2}{x+1}\)
\(=\dfrac{x^2-1-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{-2}\)
\(=\dfrac{-2x+2}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)
\(=\dfrac{-2\left(x-1\right)}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)
\(=\dfrac{1}{2}\)
Vậy: Khi x=2005 thì \(B=\dfrac{1}{2}\)
a/
Để biểu thức được xác định
\(=>\left\{{}\begin{matrix}2x-2\ne0\\2x+2\ne0\\x+1\ne0\end{matrix}\right.\)
\(\odot2x-2\ne0\)
\(2x\ne2\)
\(x\ne1\)
\(\odot2x+2\ne0\)
\(2x\ne-2\)
\(x\ne-1\)
\(\odot x+1\ne0\)
\(x\ne-1\)
Vậy điều kiện xác định của bt là: \(x\ne-1;x\ne\pm2\)
cho biểu thức A= \(\dfrac{x}{2x+4}\) + \(\dfrac{3x+2}{x^2-4}\)
a) Tìm điều kiện x để giá trị biểu thức A xác định
b) Rút gọn biểu thức A
c) Tìm x để A=0
a) A đc xác định <=>2x+4\(\left\{{}\begin{matrix}2x+4\ne0\\x^2-4\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-2\\x\ne2\end{matrix}\right.\)
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
b) Ta có: \(A=\dfrac{x}{2x+4}+\dfrac{3x+2}{x^2-4}\)
\(=\dfrac{x}{2\left(x+2\right)}+\dfrac{3x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}+\dfrac{2\left(3x+2\right)}{2\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x+6x+4}{2\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x^2+4x+4}{2\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x+2}{2\left(x-2\right)}\)
c) Để A=0 thì \(\dfrac{x+2}{2\left(x-2\right)}=0\)
\(\Leftrightarrow x+2=0\)
hay x=-2(Không thỏa mãn ĐKXĐ)
Vậy: Không có giá trị nào của x để A=0
Cho biểu thức: \(B=\left[\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right].\dfrac{4x^2-4}{5}\)
a, Tìm điều kiện của x để giá trị của biểu thức được xác định.
b, CMR: Giá trị của biểu thức ko phụ thuộc vào biến.
a) Phân thức B xác định \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\left\{\pm1\right\}\\x\ne-1\end{cases}\Leftrightarrow}x\ne\left\{\pm1\right\}}\)
b) \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\cdot\frac{4x^2-4}{5}\)
\(B=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{3\cdot2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{\left(2x\right)^2-2^2}{5}\)
\(B=\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(2x-2\right)\left(2x+2\right)}{5}\)
\(B=\frac{10\cdot2\left(x-1\right)\cdot2\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)\cdot5}\)
\(B=\frac{40\left(x-1\right)\left(x+1\right)}{10\left(x-1\right)\left(x+1\right)}\)
\(B=4\)
Vậy với mọi giá trị của x thì B luôn bằng 4
Vậy giá trị của B không phụ thuộc vào biến ( đpcm )
\(Giải:\)
\(ĐKXĐ:x\ne\pm1\)
\(B=\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right]=\left[\frac{x+1}{2x-2}+\frac{12}{4x^2-4}-\frac{x+3}{2x+2}\right]\)
\(=\left[\frac{x+1}{2x-2}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{x+3}{2x+2}\right]\)
\(=\left[\frac{\left(x+1\right)\left(2x+2\right)}{\left(2x+2\right)\left(2x-2\right)}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]\)
\(=\frac{2x^2+4x+14-2x^2+2x-6x+6}{\left(2x-2\right)\left(2x+2\right)}\)
\(=\frac{6}{\left(2x-2\right)\left(2x+2\right)}\)
a) Biểu thức B xác định
Khi và chỉ khi \(x\ne\pm1\)
b) \(B=\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right].\frac{4x^2-4}{5}\)
\(=\left[\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right].\frac{4\left(x^2-1\right)}{5}\)
\(=\left[\frac{\left(x+1\right)^2+3.2-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\left[\frac{x^2+2x+1+6-\left(x^2-x+3x-3\right)}{2\left(x-1\right)\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\left[\frac{x^2+2x+1+6-x^2+x-3x+3}{2\left(x+1\right)\left(x-1\right)}\right].\frac{4\left(x+1\right)\left(x-1\right)}{5}\)
\(=\frac{10}{2\left(x+1\right)\left(x-1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\frac{10.4.\left(x-1\right)\left(x+1\right)}{2.5.\left(x-1\right)\left(x+1\right)}=4\)
Vậy giá trị của biểu thức không phụ thuộc vào biến x
cho P=\(\left(\dfrac{x+2}{2x-4}+\dfrac{x-2}{2x+4}+\dfrac{-8}{x^2-4}\right):\dfrac{4}{x-2}\)
A) Tìm điều kiện của x để P xác định
B) Rút gọn biểu thức P
C) tính giá trị của biểu thức P khi x=\(-1\dfrac{1}{3}\)
cho phân thức: \(\dfrac{x^2-6x+9}{x^2-3x}\)
a)tìm điều kiện của x để giá trị phân thức được xác định
b)rút gọn phân thức
c)tính giá trị của phân thức khi x=5?
`a,`
\(x^2-3x\ne0\)
`<=>x(x-3)`\(\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x-3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne3\end{matrix}\right.\)
`b,`
đặt `A=(x^2-6x+9)/(x^2-3x)`
`A= ((x-3)^2)/(x(x-3))`
`A= (x-3)/x`
`c, `
để `x=5`
`=> A= (x -3)/x=(5-3)/5= 2/5`
a/ ĐKXĐ: \(x^2-3x\ne0\) \(\Leftrightarrow\) x\(\ne\)0,x\(\ne\)3
b/ \(\dfrac{x^2-6x+9}{x^2-3x}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
c/ x= 5 => \(\dfrac{x-3}{x}=\dfrac{5-3}{5}=\dfrac{2}{5}\)
Bài 6: Cho các biểu thức B= \(\dfrac{x}{2x-2}\)+\(\dfrac{x^{2^{ }}+1}{2-2x^2}\)
a) Tìm điều kiện xác định của biểu thức B.
b) Rút gọn biểu thức B.
a) Tìm giá trị của x để B= - \(\dfrac{1}{2}\)
\(a,ĐK:x\ne\pm1\\ b,B=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}\\ c,B=-\dfrac{1}{2}\Leftrightarrow2\left(x+1\right)=-2\Leftrightarrow x+1=-1\Leftrightarrow x=-2\left(tm\right)\)
P = \(\left(1-\dfrac{x^2+2x+1}{x^3+1}\right)\)\(:\dfrac{x^2+2x+1}{x^3+1}\)
a)Tìm điều kiện của x để biểu thức P xác định
b)Rút gọn biểu thức P
c)Với giá trị nào của x thì P = 2
d)Tìm các giá trị nguyên của x để P nhận giá trị nguyên
a: ĐKXĐ: x<>-1
b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)
\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)
c: P=2
=>x^2-2x=2x+2
=>x^2-4x-2=0
=>\(x=2\pm\sqrt{6}\)