tìm tập xác định của hàm số
y=\(\sqrt{\dfrac{1+sinx}{1-cosx}}\)
tìm tập xác định của hàm số
a. y=\(\dfrac{sinx}{cosx-1}\)
b.y=\(\sqrt{sinx-1}\)
c.y=\(\sqrt{\dfrac{1+sinx}{1-cosx}}\)
a: ĐKXĐ: \(cosx-1\ne0\)
=>\(cosx\ne1\)
=>\(x\ne k2\Omega\)
b: ĐKXĐ: sin x-1>=0
=>sin x>=1
mà \(-1< =sinx< =1\)
nên sin x=1
=>\(x=\dfrac{\Omega}{2}+k2\Omega\)
c:
-1<=sin x<=1
=>-1+1<=sin x+1<=1+1
=>0<=sin x+1<=2
ĐKXĐ: \(\dfrac{1+sinx}{1-cosx}>=0\)
mà \(1+sinx>=0\)(cmt)
nên \(1-cosx>0\)
=>\(cosx< 1\)
mà -1<=cosx<=1
nên \(cosx\ne1\)
=>\(x\ne k2\Omega\)
tìm tập xác định của hàm số
y=\(\sqrt{sinx-1}\)
Có: `-1 <= sin x <= 1`
`<=>-2 <= sin x-1 <= 0=>sin x-1 <= 0`
Để hàm số đã cho xác định `<=>sin x-1 >= 0` Mà `sin x - 1 <= 0`
`=>sin x -1=0<=>x=\pi/2+k2\pi` `(k in ZZ)`
`=>TXĐ: D=\pi/2 +k2\pi` `(k in ZZ)`.
Tìm tập xác định của hàm số
1/ \(y=\dfrac{sinx}{\sqrt{3-cosx}}\)
2/ \(y=\sqrt{1-sin3x}\)
3/ \(y=\dfrac{tan2x+1}{sinx}\)
4/ \(y=sin\sqrt{2x-1}\)
1: ĐKXĐ: 3-cosx>0
=>cosx<3(luôn đúng)
2: ĐKXĐ: 1-sin 3x>=0
=>sin 3x<=1(luôn đúng)
3: ĐKXĐ: sin x<>0 và 2x<>pi/2+kpi
=>x<>kpi và x<>pi/4+kpi/2
4: ĐKXĐ: 2x-1>=0
=>x>=1/2
Tìm tập xác định của các hàm số sau:
1,\(y=sin\dfrac{3x+2}{2x-1}\)
2,\(y=tan\left(3x+\dfrac{2\pi}{5}\right)\)
3,\(y=cot\left(2x-\dfrac{1}{3}\right)\)
4,\(y=\dfrac{sinx+cosx}{sinx-cosx}\)
5,\(y=\dfrac{1}{sinx}+\dfrac{1}{cosx}\)
6,\(y=\dfrac{\sqrt{1-sinx}}{cosx}\)
7,\(y=\dfrac{3}{sin^2x-cos^2x}\)
8,\(y=\dfrac{1+tanx}{1+sinx}\)
9,\(y=\sqrt{\dfrac{1+sinx}{1-cosx}}\)
tìm tất cả giá trị của m để hàm số sau có tập xác định R
a)y=\(\sqrt{m-cosx}\)
b)y=\(\sqrt{2sinx-m}\)
c)y=\(\dfrac{sinx-1}{cosx+m}\)
a.
\(\Leftrightarrow m-cosx\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\ge max\left(cosx\right)\)
\(\Leftrightarrow m\ge1\)
b.
\(\Leftrightarrow2sinx-m\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\le2sinx\) ; \(\forall x\)
\(\Leftrightarrow m\le\min\limits_{x\in R}\left(2sinx\right)\)
\(\Leftrightarrow m\le-2\)
c.
\(\Leftrightarrow cosx+m\ne0\) ; \(\forall x\)
\(\Leftrightarrow\left[{}\begin{matrix}m>\max\limits_R\left(cosx\right)\\m< \min\limits_R\left(cosx\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
c1 tập xác định của hàm số \(y=\dfrac{sin2x+cosx}{tanx-sinx}\)
c2 tập xác định của hàm số \(y=\sqrt{1+cot^22x}\)
c3 tập xác định của hàm số \(y=cot\left(x-\dfrac{\pi}{4}\right)+tan\left(x-\dfrac{\pi}{4}\right)\)
1.
ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\\dfrac{sinx}{cosx}-sinx\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
2.
ĐKXĐ: \(sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
3.
ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\cos\left(x-\dfrac{\pi}{4}\right)\ne0\end{matrix}\right.\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{2}\right)\ne0\Leftrightarrow cos2x\ne0\)
\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
câu 2 ..... \(\dfrac{cos^22x}{sin^22x}=cot^22x\) nên suy ra sin2x khác 0 đúng hơm
còn câu 3, tui ko hiểu chỗ sin(2x-pi/4).. sao ở đây rớt xuống dợ
tìm tập xác định của hàm số
a. y=\(\dfrac{sinx}{cosx-1}\)
Hàm số xác định `<=>cos x -1 ne 0`
`<=>cos x ne 1<=>x ne k2\pi` `(k in ZZ)`
`=>TXĐ: D=RR\\{k2\pi|k in ZZ}`.
Giúp mình với gấp lắm ạ
Tìm tập xác định của hàm số
y = \(\dfrac{cos3x}{1-sinx}\) + tanx
\(y=\dfrac{cos3x}{1-sinx}+tanx=\dfrac{cos3x}{1-sinx}+\dfrac{sinx}{cosx}\)
Hàm số xác định khi \(\left\{{}\begin{matrix}1-sinx\ne0\\cosx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}sinx\ne1\\cosx\ne0\end{matrix}\right.\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\)
tìm tập xác định của hàm số
y=\(\dfrac{x+5}{\left(x+1\right)\sqrt{x-1}}\)
Hàm số xác định: \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\x-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x>1\end{matrix}\right.\) \(\Rightarrow x>1\)
Vậy \(D=\left(1;+\infty\right)\)