Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 23:41

a) Bình phương hai vế ta được

\(2{x^2} - 3x - 1 = 2x - 3\)

\(\begin{array}{l} \Leftrightarrow 2{x^2} - 5x +2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \frac{1}{2}\end{array} \right.\end{array}\)

Thay các giá trị tìm được vào bất phương trình \(2x - 3 \ge 0\) thì chỉ \(x=2\) thỏa mãn.

Vậy tập nghiệm của phương trình là \(S = \left\{2 \right\}\)

b) Bình phương hai vế ta được

\(\begin{array}{l}4{x^2} - 6x - 6 = {x^2} - 6\\ \Leftrightarrow 3{x^2} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)

Thay các giá trị tìm được vào bất phương trình \({x^2} - 6 \ge 0\) thì thấy chỉ có nghiệm \(x = 2\)thỏa mãn.

Vậy tập nghiệm của phương trình là \(S = \left\{ 2 \right\}\)

c) \(\sqrt {x + 9}  = 2x - 3\)(*)

Ta có: \(2x - 3 \ge 0 \Leftrightarrow x \ge \frac{3}{2}\)

Bình phương hai vế của (*) ta được:

\(\begin{array}{l}x + 9 = {\left( {2x - 3} \right)^2}\\ \Leftrightarrow 4{x^2} - 12x + 9 = x + 9\\ \Leftrightarrow 4{x^2} - 13x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\left( {KTM} \right)\\x = \frac{{13}}{4}\left( {TM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{13}}{4}} \right\}\)

d) \(\sqrt { - {x^2} + 4x - 2}  = 2 - x\)(**)

Ta có: \(2 - x \ge 0 \Leftrightarrow x \le 2\)

Bình phương hai vế của (**) ta được:

\(\begin{array}{l} - {x^2} + 4x - 2 = {\left( {2 - x} \right)^2}\\ \Leftrightarrow  - {x^2} + 4x - 2 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 8x + 6 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( {TM} \right)\\x = 3\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:36

a) \(\sqrt {6{x^2} + 13x + 13}  = 2x + 4\)    

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}6{x^2} + 13x + 13 = 4{x^2} + 16x + 16\\ \Leftrightarrow 2{x^2} - 3x - 3 = 0\end{array}\)

\( \Leftrightarrow x = \frac{{3 - \sqrt {33} }}{4}\) hoặc \(x = \frac{{3 + \sqrt {33} }}{4}\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị \(x = \frac{{3 - \sqrt {33} }}{4}\) và \(x = \frac{{3 + \sqrt {33} }}{4}\) đều thỏa mãn

Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{3 - \sqrt {33} }}{4};\frac{{3 + \sqrt {33} }}{4}} \right\}\)

b) \(\sqrt {2{x^2} + 5x + 3}  =  - 3 - x\)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}2{x^2} + 5x + 3 = 9 + 6x + {x^2}\\ \Leftrightarrow {x^2} - x - 6 = 0\end{array}\)

\( \Leftrightarrow x =  - 2\) hoặc \(x = 3\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy không có giá trị nào thỏa mãn

Vậy phương trình vô nghiệm

c) \(\sqrt {3{x^2} - 17x + 23}  = x - 3\)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}3{x^2} - 17x + 23 = {x^2} - 6x + 9\\ \Leftrightarrow 2{x^2} - 11x + 14 = 0\end{array}\)

\( \Leftrightarrow x = 2\) hoặc \(x = \frac{7}{2}\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy \(x = \frac{7}{2}\) thỏa mãn

Vậy nghiệm của phương trình là \(x = \frac{7}{2}\)                  

d) \(\sqrt { - {x^2} + 2x + 4}  = x - 2\)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l} - {x^2} + 2x + 4 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 6x = 0\end{array}\)

\( \Leftrightarrow x = 0\) hoặc \(x = 3\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x=3 thỏa mãn

Vậy nghiệm của phương trình là x=3

Oriana.su
Xem chi tiết
Hồng Phúc
15 tháng 9 2021 lúc 15:18

a, ĐK: \(x\ge11\)

\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\)

\(\Leftrightarrow x+\sqrt{x-11}+x-\sqrt{x-11}+2\sqrt{x^2-x+11}=16\)

\(\Leftrightarrow2x+2\sqrt{x^2-x+11}=16\)

\(\Leftrightarrow x+\sqrt{x^2-x+11}=8\)

Ta thấy \(x+\sqrt{x^2-x+11}>11>\text{​​}8\)

\(\Rightarrow\) phương trình vô nghiệm.

Nguyễn Hoàng Minh
15 tháng 9 2021 lúc 15:22

\(a,\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\left(x\ge11\right)\\ \Leftrightarrow x+\sqrt{x-11}+x-\sqrt{x-11}+2\sqrt{\left(x+\sqrt{x-11}\right)\left(x-\sqrt{x-11}\right)}=16\\ \Leftrightarrow2x+2\sqrt{x^2-x+11}=16\\ \Leftrightarrow x+\sqrt{x^2-x+11}=8\\ \Leftrightarrow\sqrt{x^2-x+11}=8-x\\ \Leftrightarrow x^2-x+11=x^2-16x+64\\ \Leftrightarrow15x=53\\ \Leftrightarrow x=\dfrac{53}{15}\left(ktm\right)\)

\(b,\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\\ \Leftrightarrow\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\\ \Leftrightarrow\left|\sqrt{2x-5}-1\right|=1-\sqrt{2x-5}\\ \Leftrightarrow\sqrt{2x-5}-1\le0\\ \Leftrightarrow\sqrt{2x-5}\le1\\ \Leftrightarrow2x-5\le1\Leftrightarrow x\le\dfrac{5}{2}\\ \Leftrightarrow x=\dfrac{5}{2}\)

Hồng Phúc
15 tháng 9 2021 lúc 15:23

b, ĐK: \(x\ge\dfrac{5}{2}\)

\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)

\(\Leftrightarrow\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\):

\(\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|\)

\(=\left|\sqrt{2x-5}+3\right|+\left|1-\sqrt{2x-5}\right|\)

\(\ge\left|\sqrt{2x-5}+3+1-\sqrt{2x-5}\right|\)

\(=4\)

Đẳng thức xảy ra khi: 

\(\left(\sqrt{2x-5}+3\right)\left(1-\sqrt{2x-5}\right)\ge0\)

\(\Leftrightarrow1-\sqrt{2x-5}\ge0\)

\(\Leftrightarrow\sqrt{2x-5}\le1\)

\(\Leftrightarrow0\le2x-5\le1\)

\(\Leftrightarrow\dfrac{5}{2}\le x\le3\)

Lê Hương Giang
Xem chi tiết
Tử Nguyệt Hàn
24 tháng 8 2021 lúc 18:05

\(\sqrt{x^{ }2-6x+9}=4-x\)
\(\sqrt{\left(x-3\right)^{ }2}=4-x\)
x-3=4-x
x+x=4+3
2x=7
x=\(\dfrac{7}{2}\)

Akai Haruma
24 tháng 8 2021 lúc 18:18

Lời giải:
a.

PT \(\Leftrightarrow \left\{\begin{matrix} 4-x\geq 0\\ x^2-6x+9=(4-x)^2=x^2-8x+16\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\leq 4\\ 2x=7\end{matrix}\right.\Leftrightarrow x=\frac{7}{2}\)

b.

ĐKXĐ: $x\geq \frac{3}{2}$

PT \(\Leftrightarrow \sqrt{(2x-3)+2\sqrt{2x-3}+1}+\sqrt{(2x-3)+8\sqrt{2x-3}+16}=5\)

\(\Leftrightarrow \sqrt{(\sqrt{2x-3}+1)^2}+\sqrt{(\sqrt{2x-3}+4)^2}=5\)

\(\Leftrightarrow |\sqrt{2x-3}+1|+|\sqrt{2x-3}+4|=5\)

\(\Leftrightarrow \sqrt{2x-3}+1+\sqrt{2x-3}+4=2\sqrt{2x-3}+5=5\)

\(\Leftrightarrow \sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)

Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 23:56

a: Ta có: \(\sqrt{x^2-6x+9}=4-x\)

\(\Leftrightarrow\left|x-3\right|=4-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-x\left(x\ge3\right)\\x-3=x-4\left(x< 3\right)\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=7\)

hay \(x=\dfrac{7}{2}\left(nhận\right)\)

....
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 7 2021 lúc 16:44

a.

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\ge0\\3x^2-17x+4=\left(3x-2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x^2-17x+4=9x^2-12x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\6x^2+5x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}x=0< \dfrac{2}{3}\left(loại\right)\\x=-\dfrac{5}{6}< \dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

Nguyễn Việt Lâm
1 tháng 7 2021 lúc 16:46

b.

ĐKXĐ: \(\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)

Đặt \(\sqrt{x^2-5x+4}=t\ge0\Leftrightarrow x^2-5x=t^2-4\)

\(\Rightarrow2x^2-10x=2t^2-8\)

Phương trình trở thành:

\(2t^2-8-3t+6=0\)

\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{1}{2}< 0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-5x+4}=2\)

\(\Leftrightarrow x^2-5x=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:26

a) \(\sqrt {{x^2} - 7x}  = \sqrt { - 9{x^2} - 8x + 3} \)

\(\begin{array}{l} \Rightarrow {x^2} - 7x =  - 9{x^2} - 8x + 3\\ \Rightarrow 10{x^2} + x - 3 = 0\end{array}\)

\( \Rightarrow x =  - \frac{3}{5}\) và \(x = \frac{1}{2}\)

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {{x^2} - 7x}  = \sqrt { - 9{x^2} - 8x + 3} \) thì ta thấy chỉ có nghiệm \(x =  - \frac{3}{5}\) thỏa mãn phương trình

Vậy nghiệm của phương trình là \(x =  - \frac{3}{5}\)

b) \(\sqrt {{x^2} + x + 8}  - \sqrt {{x^2} + 4x + 1}  = 0\)

\(\begin{array}{l} \Rightarrow \sqrt {{x^2} + x + 8}  = \sqrt {{x^2} + 4x + 1} \\ \Rightarrow {x^2} + x + 8 = {x^2} + 4x + 1\\ \Rightarrow 3x = 7\\ \Rightarrow x = \frac{7}{3}\end{array}\)

Thay \(x = \frac{7}{3}\) vào phương trình \(\sqrt {{x^2} + x + 8}  - \sqrt {{x^2} + 4x + 1}  = 0\) ta thấy thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = \frac{7}{3}\)

c) \(\sqrt {4{x^2} + x - 1}  = x + 1\)

\(\begin{array}{l} \Rightarrow 4{x^2} + x - 1 = {\left( {x + 1} \right)^2}\\ \Rightarrow 4{x^2} + x - 1 = {x^2} + 2x + 1\\ \Rightarrow 3{x^2} - x - 2 = 0\end{array}\)

\( \Rightarrow x =  - \frac{2}{3}\) và \(x = 1\)

Thay hai nghiệm trên vào phương trình \(\sqrt {4{x^2} + x - 1}  = x + 1\) ta thấy cả hai nghiệm đều thỏa mãn

Vậy nghiệm của phương trình trên là \(x =  - \frac{2}{3}\) và \(x = 1\)

d) \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \)

\(\begin{array}{l} \Rightarrow 2{x^2} - 10x - 29 = x - 8\\ \Rightarrow 2{x^2} - 11x - 21 = 0\end{array}\)

\( \Rightarrow x =  - \frac{3}{2}\) và \(x = 7\)

Thay hai nghiệm \(x =  - \frac{3}{2}\) và \(x = 7\) vào phương trình  \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \) ta thấy cả hai đều không thảo mãn phương trình

Vậy phương trình \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \) vô nghiệm

Lê Hương Giang
Xem chi tiết
Yeutoanhoc
28 tháng 6 2021 lúc 20:32

a)ĐK:\(\begin{cases}25x^2-9 \ge 0\\5x+3 \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}(5x-3)(5x+3) \ge 0\\5x+3 \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}\left[ \begin{array}{l}x\ge \dfrac35\\x \le -\dfrac35\end{array} \right.\\\end{cases}\)

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x \ge \dfrac35\end{array} \right.\)

`pt<=>\sqrt{5x+3}(\sqrt{5x-3}-2)=0`

`<=>` \(\left[ \begin{array}{l}5x+3=0\\\sqrt{5x-3}=2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\5x-3=4\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x=7/5\end{array} \right.\) 

`b)sqrt{x-3}/sqrt{2x+1}=2`

ĐK:\(\begin{cases}x-3 \ge 0\\2x+1>0\\\end{cases}\)

`<=>x>=3`

`pt<=>sqrt{x-3}=2sqrt{2x+1}`

`<=>x-3=8x+4`

`<=>7x=7`

`<=>x=1(l)`

`c)sqrt{x^2-2x+1}+sqrt{x^2-4x+4}=3`

`<=>sqrt{(x-1)^2}+sqrt{(x-2)^2}=3`

`<=>|x-1|+|x-2|=3`

`**x>=2`

`pt<=>x-1+x-2=3`

`<=>2x=6`

`<=>x=3(tm)`

`**x<=1`

`pt<=>1-x+2-x=3`

`<=>3-x=3`

`<=>x=0(tm)`

`**1<=x<=2`

`pt<=>x-1+2-x=3`

`<=>=-1=3` vô lý

Vậy `S={0,3}`

Tsumetai Kodoku
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2023 lúc 11:53

a: \(\sqrt{x^2+6x+9}=\sqrt{11+6\sqrt{2}}\)

=>\(\sqrt{\left(x+3\right)^2}=\sqrt{\left(3+\sqrt{2}\right)^2}\)

=>\(\left|x+3\right|=\left|3+\sqrt{2}\right|=3+\sqrt{2}\)

=>\(\left[{}\begin{matrix}x+3=3+\sqrt{2}\\x+3=-3-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-6-\sqrt{2}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}2x-y=4\\x+2y=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x-2y=8\\x+2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-2y+x+2y=8-3\\2x-y=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5x=5\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\cdot1-4=-2\end{matrix}\right.\)

Xem chi tiết