Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Trần Nam Khánh
Xem chi tiết
Lê Trần Nam Khánh
Xem chi tiết
Nguyễn Đức Trí
6 tháng 10 2023 lúc 19:12

Áp dụng BĐT :

\(\dfrac{a^{^2}}{x}+\dfrac{b^{^2}}{y}\ge\dfrac{\left(a+b\right)^2}{\left(x+y\right)}\) (Bạn tự chứng minh nhé)

\(F=\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}\ge\dfrac{\left(a+b\right)^2}{a+1+b+1}=\dfrac{\left(a+b\right)^2}{a+b+2}\)

\(\Rightarrow F=\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}\ge\dfrac{2^2}{2+2}=1\)

Vậy \(Min\left(F\right)=1\)

ILoveMath
Xem chi tiết
Akai Haruma
24 tháng 8 2021 lúc 16:12

Lời giải:

Áp dụng BĐT AM-GM:
\(A=\sum \frac{2a}{b^2+2}=\sum (a-\frac{ab^2}{b^2+2})=\sum a-\sum \frac{ab^2}{b^2+2}\)

\(=6-\sum \frac{ab^2}{b^2+2}=6-\sum \frac{ab^2}{\frac{b^2}{2}+\frac{b^2}{2}+2}\)

\(\geq 6-\sum \frac{ab^2}{3\sqrt[3]{\frac{b^4}{2}}}=6-\frac{1}{3}\sum \sqrt[3]{2a^3b^2}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sum \sqrt[3]{2a^3b^2}\leq \sum \frac{2a+ab+ab}{3}=\frac{12+2(ab+bc+ac)}{3}=4+\frac{2}{3}(ab+bc+ac)\)

\(\leq 4+\frac{2}{3}.\frac{(a+b+c)^2}{3}=12\)

Do đó: $A\geq 6-\frac{1}{3}.12=2$

Vậy $A_{\min}=2$ khi $a=b=c=2$

Kinder
Xem chi tiết
Akai Haruma
16 tháng 2 2021 lúc 1:31

Lời giải:Vì $f(x)\geq 0$ nên $\Delta=b^2-4ac\leq 0$

$\Leftrightarrow 4ac\geq b^2$

Áp dụng BĐT AM-GM:

$Q=\frac{4a+c}{b}\geq \frac{4\sqrt{ac}}{b}\geq \frac{4\sqrt{b^2}}{b}=\frac{4b}{b}=4$

Vậy $Q_{\min}=4$

Bùi Đức Anh
Xem chi tiết
Vũ Trần Giang
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2023 lúc 23:45

a.

\(F=\dfrac{a}{b+2}\Rightarrow F.b+2F=a\)

\(\Rightarrow2F=a-F.b\)

\(\Rightarrow4F^2=\left(a-F.b\right)^2\le\left(a^2+b^2\right)\left(1^2+F^2\right)=F^2+1\)

\(\Rightarrow3F^2\le1\)

\(\Rightarrow-\dfrac{1}{\sqrt{3}}\le F\le\dfrac{1}{\sqrt{3}}\)

Dấu "=" lần lượt xảy ra tại \(\left(a;b\right)=\left(-\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\) và \(\left(\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\)

b. Đặt \(\left\{{}\begin{matrix}a+b=x\\a-2b=y\end{matrix}\right.\) quay về câu a

Hi Mn
Xem chi tiết
Bakaa Jeanne
Xem chi tiết
Minh Anh
Xem chi tiết