`a, (3+2a^2)/a = 3/a+2a.`
Áp dụng BĐT AM-GM ta có:
`3/a + 2a>=2.sqrt(3/a.2a) = 2sqrt6`.
Đẳng thức xảy ra `<=> 3=2a^2`
`<=> a^2=3/2`.
`<=> a=sqrt(3/2)`.
`a, (3+2a^2)/a = 3/a+2a.`
Áp dụng BĐT AM-GM ta có:
`3/a + 2a>=2.sqrt(3/a.2a) = 2sqrt6`.
Đẳng thức xảy ra `<=> 3=2a^2`
`<=> a^2=3/2`.
`<=> a=sqrt(3/2)`.
cho a+b+c=3/2 a,b,c>0 tìm min F=\(\dfrac{a^2}{a+2b^2}\)+\(\dfrac{b^2}{b+2c^2}\)+\(\dfrac{c^2}{c+2a^2}\)
cho a+b=2 a,b>0 tìm min F=\(\dfrac{a^2}{a+1}\)+\(\dfrac{b^2}{b+1}\)
cho a,b,c>0 thỏa mã a+b+c=6. Tìm Min A=\(\dfrac{2a}{b^2+2}+\dfrac{2b}{c^2+2}+\dfrac{2c}{a^2+2}\)
Cho a,b,c >0 và a+b+c=3. Tìm Min P=a2+b2+c2+\(\dfrac{ab+bc+ca}{a^2b+b^2c+c^2a}\).
1. Cho a,b >0; a+b ≤ 1
Tìm min \(N=ab+\dfrac{1}{ab}\)
2. Cho a,b,c >0 t/m: a+b+c ≥ 6
Tìm min \(P=5a+6b+7c+\dfrac{1}{a}+\dfrac{8}{b}+\dfrac{27}{c}\)
3. Cho a,b,c ∈ \(\left[-1;2\right]\) và \(a^2+b^2+c^2=6\)
\(CM:\) a+b+c ≥ 0
Cho a, b, c > 0 thỏa mãn : \(ab+bc+ca=3abc\)
Tìm GTLN : F = \(\dfrac{1}{a+2b+3c}+\dfrac{1}{2a+3b+c}+\dfrac{1}{3a+b+2c}\)
Cho a,b>0 và a+b=1. Tìm Min F=2/ab + 1/(a2+b2) + (a4+b4)/2
+) Cho các số dương a,b,c thỏa mãn: a+2b+3c=3
CM: \(\sqrt{\dfrac{2ab}{2ab+9c}}+\sqrt{\dfrac{2bc}{2bc+a}}+\sqrt{\dfrac{ac}{ac+2b}}\le\dfrac{3}{2}\)
+) Cho a,b,c >0 và a+b+c≤3
Tìm min P\(=\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\)
cho a;b >0 và a+b\(\ge\)1.tìm min F=\(\left(a^3+b^3\right)^2+a^2+b^2+\frac{3}{2}ab\)