5. Tìm n biết:
a) 3n + 1 - 3n = 162
Bài 10: Tìm các số nguyên \(x\) biết:
a) \(2x-3\) là bội của \(x+1\)
b) \(x-2\) là ước của \(3x-2\)
Bài 14: Tìm số tự nhiên \(n\) sao cho:
a) \(4n-5\) ⋮ \(2n-1\)
b) \(n^2+3n+1\) ⋮ \(n+1\)
Bài 16: Tìm cặp số tự nhiên \(x\),\(y\) biết:
a) \(\left(x+5\right)\left(y-3\right)=15\)
b) \(\left(2x-1\right)\left(y+2\right)=24\)
c) \(xy+2x+3y=0\)
d) \(xy+x+y=30\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
Bài 16:
a: \(\left(x+5\right)\left(y-3\right)=15\)
=>\(\left(x+5\right)\left(y-3\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>\(\left(x+5;y-3\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-4;18\right);\left(10;4\right);\left(-6;-12\right);\left(-20;2\right);\left(-2;8\right);\left(0;6\right);\left(-8;-2\right);\left(-10;0\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(10;4\right);\left(0;6\right)\right\}\)
b: x là số tự nhiên
=>2x-1 lẻ và 2x-1>=-1
\(\left(2x-1\right)\left(y+2\right)=24\)
mà 2x-1>=-1 và 2x-1 lẻ
nên \(\left(2x-1\right)\cdot\left(y+2\right)=\left(-1\right)\cdot\left(-24\right)=1\cdot24=3\cdot8\)
=>\(\left(2x-1;y+2\right)\in\left\{\left(-1;-24\right);\left(1;24\right);\left(3;8\right)\right\}\)
=>\(\left(2x;y\right)\in\left\{\left(0;-26\right);\left(2;22\right);\left(4;6\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;-26\right);\left(1;11\right);\left(2;6\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(1;11\right);\left(2;6\right)\right\}\)
c:
x,y là các số tự nhiên
=>x+3>=3 và y+2>=2
xy+2x+3y=0
=>\(xy+2x+3y+6=6\)
=>\(x\left(y+2\right)+3\left(y+2\right)=6\)
=>\(\left(x+3\right)\left(y+2\right)=6\)
mà x+3>=3 và y+2>=2
nên \(\left(x+3\right)\cdot\left(y+2\right)=3\cdot2\)
=>x=0 và y=0
d: xy+x+y=30
=>\(xy+x+y+1=31\)
=>\(x\left(y+1\right)+\left(y+1\right)=31\)
=>\(\left(x+1\right)\left(y+1\right)=31\)
\(\Leftrightarrow\left(x+1\right)\cdot\left(y+1\right)=1\cdot31=31\cdot1=\left(-1\right)\cdot\left(-31\right)=\left(-31\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y+1\right)\in\left\{\left(1;31\right);\left(31;1\right);\left(-1;-31\right);\left(-31;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right);\left(-2;-32\right);\left(-32;-2\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right)\right\}\)
Tìm số tự nhiên n biết:
a,(3n+5) chia hết cho (2n-1)
b,80 chia hết cho n, 48 chia hết cho n, n<8
c, n chia hết cho 12, 50,60 . 0<n<6000
a: =>6n+10 chia hết cho 2n-1
=>6n-3+13 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;13;-13}
mà n>=0
nên n thuộc {1;0;7}
b: 80 chia hết cho n
48 chia hết cho n
=>n thuộc ƯC(80;48)
=>n thuộc Ư(16)
mà n<8
nên n thuộc {1;2;4}
c: n chia hết cho 12;50;60
=>n thuộc BC(12;50;60)
=>n thuộc B(300)
mà 0<n<6000
nên \(n\in\left\{300;600;...;5700\right\}\)
Giup t bn nữa đi ah.
Tìm n ∈ N, biết:
a) 3n = 243
b) 2n = 256
a) 3n = 35 => n = 5
b) 2n = 28 => n = 8
--thodagbun--
( h tớ lm b đt nè :( )
a) \(3^n=243\)
\(=>3^n=3^5\)
\(=>n=5\)
b) \(2^n=256\)
\(=>2^n=2^8\)
\(=>n=8\)
#Nothings -_-
Hài
a) 3n = 243
=> 3n = 35
=> n = 5
b) 2n = 256
=> 2n = 28
=> n = 8
Tìm n biết:a,\(n+5⋮n+1\).
b,\(3n+7⋮n+2\)
c,\(6n+19⋮2n+3\)
a, n+5=(n+1)+4 chia hết cho n + 1
n+1 chia hết cho n+1 nên 4 chia hết n+1
=> n+1 laf uowsc cuar 4 = ( +-1 +-2 +-4 )
Bài 3: Tìm n∈❗, biết:
a) n+4⋮n b) 3n+11⋮n+2
c) n+8⋮n+3
mn bày e gấp
a: Ta có: \(n+4⋮n\)
\(\Leftrightarrow4⋮n\)
\(\Leftrightarrow n\in\left\{1;-1;2;-2;4;-4\right\}\)
b: Ta có: \(3n+11⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-1;-3;3;-7\right\}\)
c: Ta có: \(n+8⋮n+3\)
\(\Leftrightarrow n+3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-2;-4;2;-8\right\}\)
a) \(n+4⋮n\)
Vì \(n⋮n\Rightarrow4⋮n\Rightarrow n\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
b) \(3n+11⋮n+2\\ \Rightarrow\left(3n+6\right)+5⋮n+2\\ \Rightarrow3\left(n+2\right)+5⋮n+2\)
Vì \(3\left(n+2\right)⋮n+2\Rightarrow5⋮n+2\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\Rightarrow n\in\left\{-7;-3;-1;3\right\}\)
c) \(n+8⋮n+3\\ \Rightarrow\left(n+3\right)+5⋮n+3\)
Vì \(n+3⋮n+3\Rightarrow5⋮n+3\Rightarrow n+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\Rightarrow n\in\left\{-8;-4;-2;2\right\}\)
1.Tìm số nguyên x,biết:
a) 2/x-1/+/1-x/=9
2.tìm các cặp số x,y thỏa mãn:
(2x+1)(5-y)=6
3.tìm số nguyên "n" ,biết:
n2+3n-5 chia hết cho n+3
4.tìm tát cả các số nguyên x thỏa mãn:
(x2-1)(x2-6)<0
GIÚP MIK VỚI,ĐÚNG CHO 5 LIKE!!
TÌM n THUỘC N ,biết:
a)n+4 chia hết cho n
b)3n +11 chia hết cho n +2
c)n + 8 chia hết cho n+3
d)2n+3 chia hết cho 3n+1
e)12-n chai hết cho 8-n
f) 27-5n chia hết cho n +3
giúp em vs ạ/em cảm mơn
a. n + 4 \(⋮\) n
\(\Rightarrow\left\{{}\begin{matrix}n⋮n\\4⋮n\end{matrix}\right.\)
4 \(⋮\) n
\(\Rightarrow\) n \(\in\) Ư (4) = {1; 2; 4}
\(\Rightarrow\) n \(\in\) {1; 2; 4}
c. n + 8 \(⋮\) n + 3
n + 3 + 5 \(⋮\) n + 3
\(\Rightarrow\left\{{}\begin{matrix}n+3\text{}⋮n+3\\5⋮n+3\end{matrix}\right.\)
\(\Rightarrow\) 5 \(⋮\) n + 3
\(\Rightarrow\) n + 3 \(\in\) Ư (5) = {1; 5}
n + 3 | 1 | 5 |
n | vô lí | 2 |
\(\Rightarrow\) n = 2
b. 3n + 11 \(⋮\) n + 2
3n + 6 + 5 \(⋮\) n + 2
3(n + 2) + 5 \(⋮\) n + 2
\(\Rightarrow\left\{{}\begin{matrix}3\left(n+2\right)\text{}⋮n+2\\5⋮n+2\end{matrix}\right.\)
\(\Rightarrow\) 5 \(⋮\) n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư (5) = {1; 5}
n + 2 | 1 | 5 |
n | vô lí | 3 |
\(\Rightarrow\) n = 3
Bài 1: Tìm x ∈ N biết:
a) 96 chia hết cho x ; 102 chia hết cho x và x > 3
b) 172 chia x dư 1 ; 183 chia x dư 3
Bài 2:
a) Tìm ƯCLN(4n + 7 ; 2n + 3)
b) Chứng tỏ rằng: \(\dfrac{3n+5}{6n+9}\) là phân số tối giản với x ∈ N
2:
a: Gọi d=ƯCLN(4n+7;2n+3)
=>\(\left\{{}\begin{matrix}4n+7⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+7⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
=>d=1
=>ƯCLN(4n+7;2n+3)=1
b: Gọi \(d=ƯCLN\left(3n+5;6n+9\right)\)
=>\(\left\{{}\begin{matrix}3n+5⋮d\\6n+9⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+10⋮d\\6n+9⋮d\end{matrix}\right.\)
=>\(1⋮d\)
=>d=1
=>Đây là phân số tối giản
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
Xét tính tăng, giảm của dãy số \(\left( {{u_n}} \right)\), biết:
a) \({u_n} = 2n - 1\);
b) \({u_n} = - 3n + 2\);
c) \({u_n} = \frac{\left( { - 1} \right)^{n - 1}}{2^n}\)
a) Ta có: \({u_{n + 1}} - {u_n} =[2\left( {n + 1} \right) - 1] - (2n - 1) = 2\left( {n + 1} \right) - 1 - 2n + 1 = 2 > 0 \Rightarrow {u_{n + 1}} > {u_n},\;\forall \;n \in {N^*}\)
Vậy \(\left( {{u_n}} \right)\) là dãy số tăng.
b) Ta có: \({u_{n + 1}} - {u_n} = [- 3\left( {n + 1} \right) + 2] - (3n + 2) = - 3\left( {n + 1} \right) + 2 + 3n - 2 = - 3 < 0\;\)
Vậy \(\left( {{u_n}} \right)\) là dãy số giảm.
c, Ta có:
\(\begin{array}{l}{u_1} = \frac{{{{( - 1)}^{1 - 1}}}}{{{2^1}}} = \frac{1}{2} > 0\\{u_2} = \frac{{{{( - 1)}^{2 - 1}}}}{{{2^2}}} = - \frac{1}{4} < 0\\{u_3} = \frac{{{{( - 1)}^{3 - 1}}}}{{{2^3}}} = \frac{1}{8} > 0\\{u_4} = \frac{{{{( - 1)}^{4 - 1}}}}{{{2^4}}} = - \frac{1}{{16}} < 0\\...\end{array}\)
Vậy \(\left( {{u_n}} \right)\) là dãy số không tăng không giảm.