a. n + 4 \(⋮\) n
\(\Rightarrow\left\{{}\begin{matrix}n⋮n\\4⋮n\end{matrix}\right.\)
4 \(⋮\) n
\(\Rightarrow\) n \(\in\) Ư (4) = {1; 2; 4}
\(\Rightarrow\) n \(\in\) {1; 2; 4}
c. n + 8 \(⋮\) n + 3
n + 3 + 5 \(⋮\) n + 3
\(\Rightarrow\left\{{}\begin{matrix}n+3\text{}⋮n+3\\5⋮n+3\end{matrix}\right.\)
\(\Rightarrow\) 5 \(⋮\) n + 3
\(\Rightarrow\) n + 3 \(\in\) Ư (5) = {1; 5}
n + 3 | 1 | 5 |
n | vô lí | 2 |
\(\Rightarrow\) n = 2
b. 3n + 11 \(⋮\) n + 2
3n + 6 + 5 \(⋮\) n + 2
3(n + 2) + 5 \(⋮\) n + 2
\(\Rightarrow\left\{{}\begin{matrix}3\left(n+2\right)\text{}⋮n+2\\5⋮n+2\end{matrix}\right.\)
\(\Rightarrow\) 5 \(⋮\) n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư (5) = {1; 5}
n + 2 | 1 | 5 |
n | vô lí | 3 |
\(\Rightarrow\) n = 3
d. 2n + 3 \(⋮\) 3n + 1
3(2n + 3) \(⋮\) 3n + 1
6n + 9 \(⋮\) 3n + 1
6n + 2 + 7 \(⋮\) 3n + 1
2(3n + 1) + 7 \(⋮\) 3n + 1
\(\Rightarrow\left\{{}\begin{matrix}2\left(3n+1\right)⋮3n+1\\7⋮3n+1\end{matrix}\right.\)
7 \(⋮\) 3n + 1
\(\Rightarrow\) 3n + 1 \(\in\) Ư (7) = {1; 7}
3n + 1 | 1 | 7 |
n | vô lí | 2 |
\(\Rightarrow\) n = 2
e. 12 - n \(⋮\) 8 - n
4 + 8 - n \(⋮\) 8 - n
\(\Rightarrow\left\{{}\begin{matrix}4⋮8-n\\8-n⋮8-n\end{matrix}\right.\)
\(\Rightarrow\) 4 \(⋮\) 8 - n
\(\Rightarrow\) 8 - n \(\in\) Ư (4) = {1; 2; 4}
8 - n | 1 | 2 | 4 |
n | 7 | 6 | 4 |
\(\Rightarrow\) n \(\in\) {4; 6; 7}
f, 27 - 5n \(⋮\) n + 3
42 - 5n + 15 \(⋮\) n + 3
42 - 5(n + 3) \(⋮\) n + 3
\(\Rightarrow\left\{{}\begin{matrix}42⋮n+3\\5\left(n+3\right)⋮n+3\end{matrix}\right.\)
\(\Rightarrow\) 42 \(⋮\) n + 3
\(\Rightarrow\) n + 3 \(\in\) Ư (42) = {1; 2; 3; 6; 7; 14; 21; 42}
n + 3 | 1 | 2 | 3 | 6 | 7 | 14 | 21 | 42 |
n | vô lí | vô lí | 0 | 3 | 4 | 11 | 18 | 39 |
\(\Rightarrow\) n \(\in\) {0; 3; 4; 11; 18; 39}