tìm min
A = (x+1)(x+2)(x+3)(x+4)+18
Tìm MinA bt A=|x-1\+|x-2|+|x-3|
nhanh mik tick
1. Tìm max và min
a) \(A=\sqrt{x-3}+\sqrt{7-x}\)
b) \(B=\dfrac{3+8x^2+12x^4}{\left(1+2x^2\right)^2}\)
2. Cho \(36x^2+16y^2=9\)
\(CM:\dfrac{15}{4}\text{≤}y-2x+5\text{≤}\dfrac{25}{4}\)
a) ĐKXĐ : \(3\le x\le7\)
Ta có \(A=1.\sqrt{x-3}+1.\sqrt{7-x}\)
\(\le\sqrt{\left(1+1\right)\left(x-3+7-x\right)}=\sqrt{8}\)(BĐT Bunyacovski)
Dấu "=" xảy ra <=> \(\dfrac{1}{\sqrt{x-3}}=\dfrac{1}{\sqrt{7-x}}\Leftrightarrow x=5\)
\(1,\\ a,A\le\sqrt{\left(x-3+7-x\right)\left(1+1\right)}=\sqrt{8}=2\sqrt{2}\\ A^2=4+2\sqrt{\left(x-3\right)\left(7-x\right)}\ge4\Leftrightarrow A\ge2\\ \Leftrightarrow2\le A\le2\sqrt{2}\\ \left\{{}\begin{matrix}A_{min}\Leftrightarrow\left(x-3\right)\left(7-x\right)=0\Leftrightarrow...\\A_{max}\Leftrightarrow x-3=7-x\Leftrightarrow x=5\end{matrix}\right.\)
\(B=\dfrac{\dfrac{5}{2}\left(4x^4+4x^2+1\right)+2\left(x^4-x^2+\dfrac{1}{4}\right)}{\left(2x^2+1\right)^2}\\ B=\dfrac{\dfrac{5}{2}\left(2x^2+1\right)^2+2\left(x^2-\dfrac{1}{2}\right)^2}{\left(2x^2+1\right)^2}=\dfrac{5}{2}+\dfrac{2\left(x^2-\dfrac{1}{2}\right)^2}{\left(2x^2+1\right)^2}\ge\dfrac{5}{2}\)
\(B=\dfrac{3\left(4x^4+4x^2+1\right)-4x^2}{\left(1+2x^2\right)^2}=\dfrac{3\left(1+2x^2\right)^2-4x^2}{\left(1+2x^2\right)^2}=3-\dfrac{4x^2}{\left(1+2x^2\right)^2}\)
Vì \(-\dfrac{4x^2}{\left(1+2x^2\right)^2}\le0\Leftrightarrow B\le3\)
\(\Leftrightarrow\left\{{}\begin{matrix}B_{min}\Leftrightarrow x^2=\dfrac{1}{2}\Leftrightarrow x=\pm\dfrac{1}{\sqrt{2}}\\B_{max}\Leftrightarrow x=0\end{matrix}\right.\)
\(2,\)
Ta có \(\left(y-2x\right)^2=\left(-2x+y\right)^2=\left[\dfrac{1}{3}\left(-6x\right)+\dfrac{1}{4}\left(4y\right)\right]^2\)
\(\Leftrightarrow\left(y-2x\right)^2\le\left[\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{4}\right)^2\right]\left[\left(-6x\right)^2+\left(4y\right)^2\right]=\dfrac{5^2}{3^2\cdot4^2}\left(36x^2+16y^2\right)=\dfrac{5^2}{4^2}\\ \Leftrightarrow\left|y-2x\right|\le\dfrac{5}{4}\\ \Leftrightarrow-\dfrac{5}{4}\le y-2x\le\dfrac{5}{4}\\ \Leftrightarrow\dfrac{15}{4}\le y-2x+5\le\dfrac{25}{4}\)
\(Max\Leftrightarrow\left\{{}\begin{matrix}-18x=16y\\y-2x=\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=\dfrac{9}{20}\end{matrix}\right.\\ Min\Leftrightarrow\left\{{}\begin{matrix}-18x=16y\\y-2x=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{9}{20}\end{matrix}\right.\)
Tìm nghiệm của các đa thức sau đây:
1. f(x) = 3x2 - 4x - 7
2. f(x) = x3 - 9x
3. f(x) = x3 + 3x2 + 3x + 1
Mina ơi, giúp Shino cái nà. Iu mina nhìu <3
1) \(3x^2-4x-7=0\)
\(\Leftrightarrow3x^2+3x-7x-7=0\)
\(\Leftrightarrow3x\left(x+1\right)-7\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\end{cases}}\)
Vậy....
2) \(x^3-9x=0\)
\(\Leftrightarrow x\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)
Vậy....
3) \(x^3+3x^2+3x+1=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy....
Tìm minA=x^4-2x^2-3|x^2-1|-9
\(A=x^4-2x^2+1-3\left|x^2-1\right|-10\)
\(=\left|x^2-1\right|^2-3\left|x^2-1\right|-10\)
\(=\left(\left|x^2-1\right|-\frac{3}{2}\right)^2-\frac{49}{4}\ge-\frac{49}{4}\)
\(A_{min}=-\frac{49}{4}\) khi \(\left|x^2-1\right|=\frac{3}{2}\Rightarrow x=\pm\sqrt{\frac{5}{2}}\)
Tìm min
A = x - 2\(\sqrt{x+1}\) - 2\(\sqrt{x-2}\) + 10
giê ơt nha bn
Bài 1 : Cho A = x ( x - 1/2 ). Tìm x để :
a) A = 0
b) A > 0
c) A < 0
Bài 2 : Tìm MinA = 1 + | x - 1/2 |
Tìm MaxB = - | x - 2 | - 4
Cho x + y + z = 3/2
Tìm MinA =4( \(x^2+y^2+z^2\))
Ta có
\(A=4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2.\frac{1}{3}=3\)
Cho x,y>0 thỏa mãn\(x+y\le\frac{4}{3}\).Tìm\(minA=x+y+\frac{1}{x}+\frac{1}{y}\).
\(A=\left(x+\frac{4}{9x}\right)+\left(y+\frac{4}{9y}\right)+\frac{5}{9}\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{x.\frac{4}{9x}}+2\sqrt{y.\frac{4}{9y}}+\frac{20}{9\left(x+y\right)}\)
\(\ge\frac{4}{3}+\frac{4}{3}+\frac{20}{12}=\frac{13}{3}\)
Dấu "=" xảy ra khi \(x=y=\frac{2}{3}\)
tìm max hoặc min
A=-(x-7)2-888
B=8/3+ |2x-1|+|y-5|
C=(x+3)2+|2y-5|-232
D=21-|3x+5|-|y-1|-(8+z)
a: A=-(x-7)^2-888<=-888
Dấu = xảy ra khi x=7
b: \(B=\left|2x-1\right|+\left|y-5\right|+\dfrac{8}{3}>=\dfrac{8}{3}\)
Dấu = xảy ra khi x=1/2 và y=5
c: \(C=\left(x+3\right)^2+\left|2y-5\right|-232>=-232\)
Dấu = xảy ra khi x=-3 và y=5/2