Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Công Nương Bé Xinh
Xem chi tiết
Minh Hiếu
Xem chi tiết
Xyz OLM
27 tháng 12 2021 lúc 22:06

a) ĐKXĐ : \(3\le x\le7\)

Ta có \(A=1.\sqrt{x-3}+1.\sqrt{7-x}\)

\(\le\sqrt{\left(1+1\right)\left(x-3+7-x\right)}=\sqrt{8}\)(BĐT Bunyacovski)

Dấu "=" xảy ra <=> \(\dfrac{1}{\sqrt{x-3}}=\dfrac{1}{\sqrt{7-x}}\Leftrightarrow x=5\)

 

Nguyễn Hoàng Minh
27 tháng 12 2021 lúc 22:07

\(1,\\ a,A\le\sqrt{\left(x-3+7-x\right)\left(1+1\right)}=\sqrt{8}=2\sqrt{2}\\ A^2=4+2\sqrt{\left(x-3\right)\left(7-x\right)}\ge4\Leftrightarrow A\ge2\\ \Leftrightarrow2\le A\le2\sqrt{2}\\ \left\{{}\begin{matrix}A_{min}\Leftrightarrow\left(x-3\right)\left(7-x\right)=0\Leftrightarrow...\\A_{max}\Leftrightarrow x-3=7-x\Leftrightarrow x=5\end{matrix}\right.\)

\(B=\dfrac{\dfrac{5}{2}\left(4x^4+4x^2+1\right)+2\left(x^4-x^2+\dfrac{1}{4}\right)}{\left(2x^2+1\right)^2}\\ B=\dfrac{\dfrac{5}{2}\left(2x^2+1\right)^2+2\left(x^2-\dfrac{1}{2}\right)^2}{\left(2x^2+1\right)^2}=\dfrac{5}{2}+\dfrac{2\left(x^2-\dfrac{1}{2}\right)^2}{\left(2x^2+1\right)^2}\ge\dfrac{5}{2}\)

\(B=\dfrac{3\left(4x^4+4x^2+1\right)-4x^2}{\left(1+2x^2\right)^2}=\dfrac{3\left(1+2x^2\right)^2-4x^2}{\left(1+2x^2\right)^2}=3-\dfrac{4x^2}{\left(1+2x^2\right)^2}\)

Vì \(-\dfrac{4x^2}{\left(1+2x^2\right)^2}\le0\Leftrightarrow B\le3\)

\(\Leftrightarrow\left\{{}\begin{matrix}B_{min}\Leftrightarrow x^2=\dfrac{1}{2}\Leftrightarrow x=\pm\dfrac{1}{\sqrt{2}}\\B_{max}\Leftrightarrow x=0\end{matrix}\right.\)

Nguyễn Hoàng Minh
27 tháng 12 2021 lúc 22:15

\(2,\)

Ta có \(\left(y-2x\right)^2=\left(-2x+y\right)^2=\left[\dfrac{1}{3}\left(-6x\right)+\dfrac{1}{4}\left(4y\right)\right]^2\)

\(\Leftrightarrow\left(y-2x\right)^2\le\left[\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{4}\right)^2\right]\left[\left(-6x\right)^2+\left(4y\right)^2\right]=\dfrac{5^2}{3^2\cdot4^2}\left(36x^2+16y^2\right)=\dfrac{5^2}{4^2}\\ \Leftrightarrow\left|y-2x\right|\le\dfrac{5}{4}\\ \Leftrightarrow-\dfrac{5}{4}\le y-2x\le\dfrac{5}{4}\\ \Leftrightarrow\dfrac{15}{4}\le y-2x+5\le\dfrac{25}{4}\)

\(Max\Leftrightarrow\left\{{}\begin{matrix}-18x=16y\\y-2x=\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=\dfrac{9}{20}\end{matrix}\right.\\ Min\Leftrightarrow\left\{{}\begin{matrix}-18x=16y\\y-2x=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{9}{20}\end{matrix}\right.\)

 

阮草~๖ۣۜDαɾƙ
Xem chi tiết
Trần Thanh Phương
8 tháng 5 2019 lúc 18:07

1) \(3x^2-4x-7=0\)

\(\Leftrightarrow3x^2+3x-7x-7=0\)

\(\Leftrightarrow3x\left(x+1\right)-7\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\end{cases}}\)

Vậy....

Trần Thanh Phương
8 tháng 5 2019 lúc 18:07

2) \(x^3-9x=0\)

\(\Leftrightarrow x\left(x^2-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=9\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)

Vậy....

Trần Thanh Phương
8 tháng 5 2019 lúc 18:09

3) \(x^3+3x^2+3x+1=0\)

\(\Leftrightarrow\left(x+1\right)^3=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy....

Huy Hoang
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 7 2020 lúc 22:59

\(A=x^4-2x^2+1-3\left|x^2-1\right|-10\)

\(=\left|x^2-1\right|^2-3\left|x^2-1\right|-10\)

\(=\left(\left|x^2-1\right|-\frac{3}{2}\right)^2-\frac{49}{4}\ge-\frac{49}{4}\)

\(A_{min}=-\frac{49}{4}\) khi \(\left|x^2-1\right|=\frac{3}{2}\Rightarrow x=\pm\sqrt{\frac{5}{2}}\)

Blkscr
Xem chi tiết
Nguyễn Thị Như Quỳnh
5 tháng 11 2021 lúc 21:00

giê ơt nha bn

Khách vãng lai đã xóa
Thu Trang
Xem chi tiết
KuDo Shinichi
Xem chi tiết
alibaba nguyễn
27 tháng 11 2016 lúc 22:36

Ta có

\(A=4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2.\frac{1}{3}=3\)

Vũ Ngọc Diệp
Xem chi tiết
Phùng Minh Quân
17 tháng 8 2019 lúc 16:32

\(A=\left(x+\frac{4}{9x}\right)+\left(y+\frac{4}{9y}\right)+\frac{5}{9}\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{x.\frac{4}{9x}}+2\sqrt{y.\frac{4}{9y}}+\frac{20}{9\left(x+y\right)}\)

\(\ge\frac{4}{3}+\frac{4}{3}+\frac{20}{12}=\frac{13}{3}\)

Dấu "=" xảy ra khi \(x=y=\frac{2}{3}\)

linhtngoc
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2023 lúc 19:19

a: A=-(x-7)^2-888<=-888

Dấu = xảy ra khi x=7

b: \(B=\left|2x-1\right|+\left|y-5\right|+\dfrac{8}{3}>=\dfrac{8}{3}\)

Dấu = xảy ra khi x=1/2 và y=5

c: \(C=\left(x+3\right)^2+\left|2y-5\right|-232>=-232\)

Dấu = xảy ra khi x=-3 và y=5/2