Những câu hỏi liên quan
tth_new
Xem chi tiết
Lê Thành An
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Akai Haruma
2 tháng 1 2021 lúc 15:30

Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:

Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24

Bình luận (2)
fghj
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 10 2019 lúc 20:15

\(P=\sum\frac{x^2\left(y+z\right)}{yz}\ge\sum\frac{4x^2\left(y+z\right)}{\left(y+z\right)^2}=\sum\frac{4x^2}{y+z}\ge\frac{4\left(x+y+z\right)^2}{y+z+z+x+x+y}=2\left(x+y+z\right)=2\)

\(P_{min}=2\) khi \(x=y=z=\frac{1}{3}\)

Câu 2 có dương không nhỉ? Không dương thì không làm được

\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{2}{\left(x+y\right)^2}=\frac{6}{\left(x+y\right)^2}\ge6\)

\(A_{min}=6\) khi \(x=y=\frac{1}{2}\)

Bình luận (0)
Eren
16 tháng 10 2019 lúc 20:26

1) \(P\ge\frac{x^2.2\sqrt{yz}}{yz}+\frac{y^2.2\sqrt{zx}}{zx}+\frac{z^2.2\sqrt{xy}}{xy}=\frac{2x^2}{\sqrt{yz}}+\frac{2y^2}{\sqrt{zx}}+\frac{2z^2}{\sqrt{xy}}\ge4\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)=4\left\{\left[\frac{x^2}{y+z}+\frac{1}{4}\left(y+z\right)\right]+\left[\frac{y^2}{z+x}+\frac{1}{4}\left(z+x\right)\right]+\left[\frac{z^2}{x+y}+\frac{1}{4}\left(x+y\right)\right]\right\}-2\left(x+y+z\right)\ge4\left(x+y+z\right)-2\left(x+y+z\right)=2\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{3}\)

2) \(A=\left[\frac{1}{x^2+y^2}+4\left(x^2+y^2\right)\right]+\left(\frac{1}{xy}+16xy\right)-4\left(x+y\right)^2-8xy\ge4+8-4-2.\left(x+y\right)^2=8-2.\left(x+y\right)^2\ge8-2=6\)

Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)

Bình luận (0)
Nguyễn Tuấn Minh
Xem chi tiết
 Mashiro Shiina
6 tháng 11 2018 lúc 21:24

\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)

\(=6\left(x^2+y^2+z^2\right)+12\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)-2\left(xy+yz+xz\right)\)

\(=6\left(x+y+z\right)^2+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{2z+x+y}\right)-2\left(xy+yz+xz\right)\)

\(\ge6\left(x+y+z\right)^2+2.\dfrac{\left(1+1+1\right)^2}{2x+y+z+x+2y+z+2z+x+y}-2\left(xy+yz+xz\right)\)

\(=6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-2\left(xy+yz+xz\right)\)

\(\ge6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-\dfrac{2}{3}\left(x+y+z\right)^2\)

\(=6.\left(\dfrac{3}{4}\right)^2+\dfrac{18}{4.\dfrac{3}{4}}-\dfrac{2}{3}.\left(\dfrac{3}{4}\right)^2=9\)

\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)

Bình luận (0)
Diệp Kì Thiên
6 tháng 11 2018 lúc 21:18

a) ab+bc+ca\(\le\dfrac{\left(a+c+b\right)^2}{3}\)

\(\Leftrightarrow3ab+3bc+3ac\le a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Leftrightarrow ab+bc+ac\le a^2+b^2+c^2\)

\(\Leftrightarrow2ab+2bc+2ca\le2a^2+2b^2+2c^2\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng \(\forall a,b,c\)

Bình luận (0)
TNA Atula
6 tháng 11 2018 lúc 21:28

a) 3.(ab+bc+ac)≤a2+b2+c2+2ab+2bc+2ac

<=> \(a^2+b^2+c^2-ab-bc-ac\ge0\)

<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

<=> (a-b)2+(b-c)2+(a-c)2≥0 ( luon dung voi moi a,b,c)

b) ap dung ket qua tren va vế sau bn xem bài giải của mk ở trên

Bình luận (1)
hoàng tố uyên
Xem chi tiết
Nguyễn Linh Chi
26 tháng 4 2020 lúc 21:37

Ta có: \(x^2+y^2+z^2+t^2-xy-xz-xt\ge0\)(1)

<=> \(2x^2+2y^2+2z^2+2t^2-2xy-2xz-2xt\ge0\)

<=> \(\left(x^2+y^2+z^2-2xy-2xz+2yz\right)+\left(y^2+z^2-2yz\right)+\left(x^2-2xt+t^2\right)+t^2\ge0\)

<=> \(\left(x-y-z\right)^2+\left(y-z\right)^2+\left(x-t\right)^2+t^2\ge0\)đúng 

=> (1) đúng 

Dấu "=" xảy ra <=> x = y = z = 0

Bình luận (0)
 Khách vãng lai đã xóa
Tran Le Khanh Linh
26 tháng 4 2020 lúc 23:25

Ta có: \(x^2+y^2+z^2+t^2\ge x\left(y+z+t\right)\)

<=> \(x^2+y^2+z^2+t^2-x\left(y+z+t\right)\ge0\)

\(\Leftrightarrow x^2+y^2+z^2+t^2-xy-xz-xt\ge0\)

\(\Leftrightarrow\left(\frac{x^2}{4}-xy+y^2\right)+\left(\frac{x^2}{4}-xz+z^2\right)+\left(\frac{x^2}{4}-xt+t^2\right)+\frac{x^2}{4}\ge0\)

\(\Leftrightarrow\left(\frac{x}{2}-y\right)^2+\left(\frac{x}{2}-z\right)^2+\left(\frac{x}{2}-t\right)^2\ge0\)(BĐT đúng)

Vậy có: \(x^2+y^2+z^2+t^2\ge x\left(y+z+t\right)\)

Đẳng thức xảy ra <=> \(\left(\frac{x}{2}-y\right)^2=\left(\frac{x}{2}-z\right)^2=\left(\frac{x}{2}-t\right)^2=\frac{x^2}{4}=0\)

\(\Leftrightarrow\frac{x}{2}-y=\frac{x}{2}-z=\frac{x}{2}-t=x=0\)

<=> x=y=z=t=0

Bình luận (0)
 Khách vãng lai đã xóa
Kakarot Songoku
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2020 lúc 17:49

\(\frac{3}{2}\ge x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(P\ge3\sqrt[3]{\frac{x\left(yz+1\right)^2.y\left(zx+1\right)^2.z\left(xy+1\right)^2}{z^2\left(zx+1\right)x^2\left(xy+1\right)y^2\left(yz+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\)

Xét \(Q=\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}=\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{\sqrt{xy}.\sqrt{yz}.\sqrt{zx}}\)

Đặt \(\left(\sqrt{xy};\sqrt{yz};\sqrt{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c\le\frac{3}{2}\Rightarrow abc\le\frac{1}{8}\)

\(Q=\frac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{abc}=\frac{1+a^2b^2c^2+a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2}{abc}\)

\(Q\ge\frac{1+a^2b^2c^2+3\sqrt[3]{a^2b^2c^2}+3\sqrt[3]{a^4b^4c^4}}{abc}=\frac{1}{abc}+abc+3\left(\frac{1}{\sqrt[3]{abc}}+\sqrt[3]{abc}\right)\)

\(Q\ge abc+\frac{1}{64abc}+3\left(\sqrt[3]{abc}+\frac{1}{4\sqrt[3]{abc}}\right)+\frac{63}{64abc}+\frac{9}{4\sqrt[3]{abc}}\)

\(Q\ge2\sqrt{\frac{abc}{64abc}}+6\sqrt{\frac{\sqrt[3]{abc}}{4\sqrt[3]{abc}}}+\frac{63}{64.\frac{1}{8}}+\frac{9}{4.\sqrt[3]{\frac{1}{8}}}=\frac{125}{8}\)

\(\Rightarrow P\ge3\sqrt[3]{Q}\ge3\sqrt[3]{\frac{125}{8}}=\frac{15}{2}\)

\(P_{min}=\frac{15}{2}\) khi \(a=b=c=\frac{1}{2}\) hay \(x=y=z=\frac{1}{2}\)

Bình luận (0)
kim chi nguyen
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết