64⋮x ; 48⋮x ; 88⋮x và x lớn nhất
x⋮4 ; x⋮7 ; x⋮8 và x nhỏ nhất khác 0
x⋮60 ; x⋮45 ; x⋮16 0< x <2000
Phương trình nào sau đây là phương trình chính tắc của elip?
\(a)\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{64}} = 1\)
b) \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{64}} = 1\)
c) \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{25}} = 1\)
d) \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{64}} = 1\)
Phương trình chính tắc của elip là: c) \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{25}} = 1\).
a) Không là PTCT vì a =b =8
b) Không là PTCT
d) Không là PTCT vì a =5 < b =8.
tính biểu thức bằng cách nhanh nhất: 64 x 75 + 24 x 64 + 64
64 x 75 + 24 x 64 + 64
64 x 75 + 24 x 64 + 64 + 1
<75 +24+1>x64
100x64
6400
64 : 0,5 + 64 : 0,25 + 64 x 4
64:0,5 + 64:0,25 + 64\(\times4\)
= 64 \(\times\) 2 + 64 \(\times\) 4 + 64 \(\times\) 4
= 64 \(\times\) ( 2 + 4 + 4)
= 64 \(\times\) 10
= 640
25 x 33 + 25 x 87 + 64 x 73 + 64 x 47
25 x 33 + 25 x 87 + 64 x 73 + 64 x 47
= 25 x ( 33 + 87 ) + 64 x ( 73 + 47 )
= 25 x 120 + 64 x 120
= 120 x ( 15 + 64 )
= 120 x 49
= 5580
25 x 33 + 25 x 87 + 64 x 73 + 64 x 47
= 25 x ( 33 + 87 ) + 64 x ( 73 +47 )
= 25 x 120 + 64 x 120
= 120 x ( 25 + 64 )
= 120 x 89
= 10680
25 x 33 + 25 x 87 + 64 x 73 + 64 x 47
= ( 33 + 87 ) x 25 + ( 73 + 47 ) x 64
= 120 x 25 + 120 x 64
= ( 25 + 64 ) x 120
= 89 x 120
= 10680
@#$%^&* !
36 x 28 + 36 x 82 + 64 x 69 + 64 x 41 = ?
=36x(28+82)+64x(69+41)
=36x110+64x110
=110x(26+64)
=110x100
=11000
**** bn hiền
36x28+36x82+64x69+64x41
=36x(28+82)+64x(69+41)
=36x110+64x110
=110x(36+64)
=110x100
=11000
36 x ( 28 + 82 ) + 64 x ( 69 + 41 ) = ( 36 + 64 ) x (28 + 82) = 100 x 110 = 11000
a)64^x : 16^x = 256
b)-2401/7^x = -7
c)64/(-4)^x = -256
a) \(64^x:16^x=256\)
\(\Rightarrow\left(2^6\right)^x:\left(2^4\right)^x=2^8\)
\(\Rightarrow2^{6x}:2^{4x}=2^8\)
\(\Rightarrow2^{6x-4x}=2^8\)
\(\Rightarrow2^{2x}=2^8\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)
b) \(\dfrac{-2401}{7^x}=-7\)
\(\Rightarrow\dfrac{-7^4}{7^x}=-7\)
\(\Rightarrow-7^{4-x}=-7\)
\(\Rightarrow7^{4-x}=7\)
\(\Rightarrow4-x=1\)
\(\Rightarrow x=4-1\)
\(\Rightarrow x=3\)
c) \(\dfrac{64}{\left(-4\right)^x}=-256\)
\(\Rightarrow\left(-4\right)^x=\dfrac{64}{-256}\)
\(\Rightarrow\left(-4\right)^x=-4\)
\(\Rightarrow\left(-4\right)^x=\left(-4\right)^1\)
\(\Rightarrow x=1\)
\(a) 64^x:16^x=256\\\Rightarrow (64:16)^x=256\\\Rightarrow 4^x=4^4\\\Rightarrow x=4\\---\)
\(b,\dfrac{-2401}{7^x}=-7\)
\(\Rightarrow7^x=-2401:\left(-7\right)\)
\(\Rightarrow7^x=343\)
\(\Rightarrow7^x=7^3\)
\(\Rightarrow x=3\)
\(c,\dfrac{64}{\left(-4\right)^x}=-256\)
\(\Rightarrow\left(-4\right)^x=64:\left(-256\right)\)
\(\Rightarrow\left(-4\right)^x=-\dfrac{1}{4}\)
\(\Rightarrow\left(-4\right)^x=\left(-4\right)^{-1}\)
\(\Rightarrow x=-1\)
#\(Toru\)
Tim x pik
a/ (x-7)(x+10)=(x-1)(x+8)
b/13+23+33+...+103=(x+1)2
1/
$(x-1)^{x+10}=(x-1)^{x+8}$
$\Rightarrow (x-1)^{x+10}-(x-1)^{x+8}=0$
$\Rightarrow (x-1)^{x+8}(x^2-1)=0$
$\Rightarrow (x-1)^{x+8}=0$ hoặc $x^2-1=0$
Nếu $(x-1)^{x+8}=0\Rightarrow x-1=0\Rightarrow x=1$
Nếu $x^2-1=0\Rightarrow x^2=1=1^2=(-1)^2\Rightarrow x=1$ hoặc $x=-1$
Vậy $x=1$ hoặc $x=-1$
2/
$1^3+2^3+3^3+...+10^3=(x+1)^2$
Ta có công thức quen thuộc:
$1^3+2^3+...+n^3=(1+2+...+n)^2=\frac{[n(n+1)]^2}{4}$
Bạn có thể xem cm tại đây:
https://diendantoanhoc.org/topic/81694-t%C3%ADnh-t%E1%BB%95ng-s-13-23-33-n3/
Khi đó:
$1^3+2^3+...+10^3=(x+1)^2$
$\Rightarrow \frac{[10(10+1)]^2}{4}=(x+1)^2$
$\Rightarrow 3025=(x+1)^2$
$\Rightarrow x+1=55$ hoặc $x+1=-55$
$\Rightarrow x=54$ hoặc $x=-56$
tính nhanh :
-33 x ( 57 - 64 ) - 57 x ( -33 + 64 )
-33x(57-64)-57x(-33+64)
= -33x57-64-57x(-33)+64
=[-33x(-33)]x(57-57)-(64+64)
=1089 x 0 - 128
=0-128
=-128
THEO MK NGHĨ LÀ ĐÚNG.CHÚC BẠN HỌC TỐT
Tìm số tự nhiên thỏa mãn: .
`@` `\text {Ans}`
`\downarrow`
\(\left(2\cdot x+2\right)^2=64\)
`\Rightarrow`\(\left(2x+2\right)^2=\left(\pm8\right)^2\)
`\Rightarrow`\(\left[{}\begin{matrix}2x+2=8\\2x+2=-8\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}2x=8+2\\2x=-8+2\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}2x=10\\2x=-6\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=10\div2\\x=-6\div2\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy, `x \in {5; -3}`
`@` `\text {Kaizuu lv uuu}`
a) 16. x2 =64
b) (5.x-2)-64= -36
c) (2x-10).(5-x)=0
a)16. x2 = 64
x2 = 64 : 16
x2 = 4
x2 = 22
⇒ x = 2
b) (5.x - 2) - 64 = -36
(5.x - 2) = -36 + 64
5.x - 2 = 28
5.x = 28 + 2
5.x = 30
x = 30 : 5
x = 6
c) (2x - 10).(5 - x) = 0
TH1: 2x - 10 = 0
2x = 0 + 10
2x = 10
x = 10 : 2
x = 5
TH2: 5 - x = 0
x = 5 - 0
x = 5
⇒ Vậy x = 5.
\(16.x^2=64\)
\(=>x^2=64:16\)
\(=>x^2=4\)
\(=>x=2\) hoặc \(x=-2\)
_______
\(\left(5x-2\right)-64=-36\)
\(=>5x-2=\left(-36\right)+64\)
\(=>5x-2=28\)
\(=>5x=28+2\)
\(=>5x=30\)
\(=>x=30:5\)
\(=>x=6\)
_______
\(\left(2x-10\right).\left(5-x\right)=0\)
TH1: \(2x-10=0\)
\(=>2x=0+10\)
\(=>2x=10\)
\(=>x=10:2\)
\(=>x=5\)
TH2: \(5-x=0\)
\(x=5-0\)
\(x=5\)
\(=>x=5\)