A=3 I x-1 I -2 I 5-3x I
B=4 I x-3 I +2 I 2x -1 I +I 4-3x I
rut gon bieu thuc
A=3 I x-1 I -2 I 5-3x I
B=4 I x-3 I +2 I 2x -1 I +I 4-3x I
I 7+5x I = 1-4x
I 4x^2 - 2x I + 1 = 2x
I x^2 - 5x + 4 I = x+4
I 4 - 3x I = 3x -4
I 1+5x I = 1 + 5x
I x^2 - 3x + 1 I = 2x-3
I x-1 I = x^2 -x
|7 + 5x| = 1 - 4x
=> \(\orbr{\begin{cases}7+5x=1-4x\left(đk:x\le\frac{1}{4}\right)\\7+5x=4x-1\left(đk:x\ge\frac{1}{4}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}7-1=-4x-5x\\7+1=4x-5x\end{cases}}\)
=> \(\orbr{\begin{cases}6=-9x\\8=-x\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{2}{3}\left(tm\right)\\x=-8\left(ktm\right)\end{cases}}\)
|4x2 - 2x| + 1 = 2x
=> |4x2 - 2x| = 2x - 1
=> \(\orbr{\begin{cases}4x^2-2x=2x-1\left(đk:x\ge\frac{1}{2}\right)\\4x^2-2x=1-2x\left(đk:x\le\frac{1}{2}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}4x^2-2x-2x+1=0\\4x^2-2x-1+2x=0\end{cases}}\)
=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\4x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x-1=0\\x^2=\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\pm\frac{1}{2}\end{cases}}\)(tm)
Vậy ...
a) (x+1/x-2)^2 + x+1/x-4 -3(2x-4/x-4)^2 = 0
b) 15x/x^2 +3x-4 - 1 = 12(1/x+4 + 1/3x-3)
c) x^2-4x+1/x+1 + 2 = - x^2-5x+1/2x+1
1. Tìm x
a). I x I + I x + 1 I + I x + 2 I + I x + 3 I + I x + 4 I = 5x
b). ( 2x - 5 ) - ( 3x - 7 ) = x+ 3
b) Theo bài ra , ta có :
(2x - 5) - (3x - 7) = x + 3
(=) 2x - 5 - 3x + 7 = x + 3
(=) -2x = 1
(=) x = -1/2
Vậy x = -1/2
Chúc bạn học tốt =))
Giải phương trình:
1, \(3x^2+6x-3=\sqrt{\dfrac{x+7}{3}}\) (2 cách khác nhau )
2, \(\left(\sqrt{3x+1}-\sqrt{x-2}\right)\left(\sqrt{3x^2+7x+2}+4\right)=4x-2\)
3, \(\sqrt{-3x-1}+\sqrt{9x^2+9x+3}=-9x^2-6x\)
4, \(\sqrt{x^2+x-6}+3\sqrt{x-1}=\sqrt{5x^2-1}\)
5, \(\left(\sqrt{x+4}+2\right)\left(x+2\sqrt{x-5}+1\right)=6x\)
6, \(\sqrt{5-x^4}-\sqrt[3]{3x^2-2}=1\)
7, \(3x^2+11+\sqrt{x-2}+\sqrt{2x+3}=14x\)
8, \(\sqrt{x-\sqrt{x-\sqrt{x-\sqrt{x-7}}}}=7\)
9, \(\sqrt{2x^2-1}+3x\sqrt{x^2-1}=3x^3+2x^2-9x-7\) ( với \(x>0\) )
Bài 1:Rút gọn các biểu thức sau
a)(x^2+2xy+y^2)(x+y)
b)y(y^3+y^2-3y-2)+(y^2-2)(y^2+y-1)
c)6x^2-(2x+5)(3x-2)
d)(2x-1)(3x+1)+(3x+4)(3-2x)
e)(3x-5)(7-5x)-(5x+2)(2-3x)
Bài 2:CM giá trị của biểu thức sau k phụ thuộc vào biến
a)y(y^3+y^2-y-2)-(y^2-2)(y^2+y+1)
b)(2x+3)(4x^2-6x+9)-2(4x^3-1)
c)3x(x+5)-(3x+18)(x-1)
d)(2x+6)(4x^2-12x+36)-8x^3+5
Bài 2 :
Câu a : \(y\left(y^3+y^2-y-2\right)-\left(y^2-2\right)\left(y^2+y+1\right)\)
\(=y^4+y^3-y^2-2y-y^4-y^3-y^2+2y^2+2y+2\)
\(=2\) \(\Rightarrow\) ko phụ thuộc vào biến .
Câu b : \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2\)
\(=29\Rightarrow\) ko thuộc vào biến
Câu c : \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)
\(=3x^2+15x-3x^2+3x-18x+18\)
\(=18\) \(\Rightarrow\) ko thuộc vào biến
Câu d : \(\left(2x+6\right)\left(4x^2-12x+36\right)-8x^3+5\)
\(=8x^3-24x^2+72x+24x^2-72x+216-8x^3+5\)
\(=221\) \(\Rightarrow\) không thuộc vào biến
câu 1) a) \(\left(x^2+2xy+y^2\right)\left(x+y\right)=\left(x+y\right)^2\left(x+y\right)=\left(x+y\right)^3\)
b) \(y\left(y^3+y^2-3y-2\right)+\left(y^2-2\right)\left(y^2+y-1\right)\)
\(=y^4+y^3-3y^2-2y+y^4+y^3-y^2-2y^2-2y+2\)
\(=2y^4+2y^3-6y^2-4y+2=2y\left(y^3+y^2-3y-2\right)+2\)
\(=2y\left(y+2\right)\left(y^2-y-1\right)+2=2\left(y^2+2y\right)\left(y^2-y-1\right)+2\)
\(=2\left(y^2+2y\right)\left(y^2-y-1+1\right)=2\left(y^2+2y\right)\left(y^2-y\right)\)
c) \(6x^2-\left(2x+5\right)\left(3x-2\right)=6x^2-\left(6x^2-4x+15x-10\right)\)
\(\Leftrightarrow6x^2-6x^2+4x-15x+10=-11x+10\)
d) \(\left(2x-1\right)\left(3x+1\right)+\left(3x+4\right)\left(3-2x\right)\)
\(\)\(=6x^2+2x-3x-1+9x-6x^2+12-8x=11\)
e) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)\)
\(=21x-15x^2-35+25x-\left(10x-15x^2+4-6x\right)\)
\(21x-15x^2-35+25x-10x+15x^2-4+6x=42x-39\)
a)(x2 – 2xy + y2)(x – y)
= (x2 – 2xy + y2).x + (x2 – 2xy + y2).(–y)
= x2.x + (–2xy).x + y2.x + x2.(–y) + (–2xy).(–y) + y2.(–y)
= x3 – 2x2y + xy2 – x2y + 2xy2 – y3
= x3 – (2x2y + x2y) + (xy2 + 2xy2) – y3
= x3 – 3x2y + 3xy2 – y3.
c)6x^2-(2x+5) (3x-2)
6x^2-(6X2-4x+15x-10)
6x2-6x2+4x-15x+10
-11x+10
d)(2x-1)(3x+1)+(3x+4)(3-2x)
(=)6x2-3x+2x-1+6x-6x2+12-8x
(=)-4x+11
Giải phương trình:
1. (x - 4)2 - 25 = 0
2. (x - 3)2 - (x - 1)2 = 0
3. (x2 - 4)(2x +3) = (x2 - 4)(x - 1)
4. (x2 - 1) - (x + 1)(2 - 3x) = 0
5. x3 + x2 + x + 1 = 0
6. x3 + x2 - x - 1 = 0
7. 2x3 + 3x2 + 6x + 5 = 0
8. x4 - 4x3 - 19x2 + 106x - 120 = 0
9. (x2 - 3x + 2)(x2 + 15x + 56) + 8 = 0
1 ) \(\left(x-4\right)^2-25=0\)
\(\Leftrightarrow\left(x-4-5\right)\left(x-4+5\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)
2 ) \(\left(x-3\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-3+x-1\right)\left(x-3-x+1\right)=0\)
\(\Leftrightarrow-2\left(2x-4\right)=0\)
\(\Leftrightarrow x=2.\)
3 ) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=-4\end{matrix}\right.\)
4 ) \(\left(x^2-1\right)-\left(x+1\right)\left(2-3x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1-2+3x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\end{matrix}\right.\)
5 ) \(x^3+x^2+x+1=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-1.\end{matrix}\right.\)
6 ) \(x^3+x^2-x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
7 ) \(2x^3+3x^2+6x+5=0\)
\(\Leftrightarrow2x^3+2x^2+x^2+x+5x+5=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=-1.\)
8 ) \(x^4-4x^3-19x^2+106x-120=0\)
\(\Leftrightarrow x^4-4x^3-19x^2+76x+30x-120=0\)
\(\Leftrightarrow x^3\left(x-4\right)-19x\left(x-4\right)+30\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^3-19x+30\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^3-8-19x+38\right)\left(x-4\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+23\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
9 ) \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+7\right)\left(x+8\right)+8=0\)
\(\Leftrightarrow\left(x^2+7x-x-7\right)\left(x^2+8x-2x-16\right)+8=0\)
\(\Leftrightarrow\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8=0\)
Đặt \(x^2+6x-7=t\)
\(\Leftrightarrow t\left(t-9\right)+8=0\)
\(\Leftrightarrow t^2-9t+8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=8\\t=1\end{matrix}\right.\)
Khi t = 8 \(\Leftrightarrow x^2+6x-7=8\Leftrightarrow x^2+6x-15\Leftrightarrow\left[{}\begin{matrix}x=-3+2\sqrt{6}\\x=-3-2\sqrt{6}\end{matrix}\right.\)
Khi t = 1 \(\Leftrightarrow x^2+6x-7=1\Leftrightarrow x^2+6x-8=0\Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{17}\\x=-3-\sqrt{17}\end{matrix}\right.\)
Vậy ........
Tìm x \(\in\)Z , biết:
a)(2x-5)+17=6
b)10-2(4-3x)=-4
c)-12+3(-x+7)=-18
d)24(3x-2)=-3
e)-45:5(3x-2x)=3
g)x(x+7)=0
h)(x+12)(x-3)=0
i)(-x+5)(3-x)=0
k)x(2+x)(7-x)=0
l)(x-1)(x+2)(-x-3)=0
a) (2x-5) + 17 = 6
2x - 5 = 6 - 17
2x - 5 = -11
2x = -11 + 5
2x = -6
x = -6 : 2
x = -3
* Các câu b→e bạn cũng làm tương tự theo trật tự như vậy là được
* Các câu từ g → l thì bạn áp dụng lí thuyết sau:
Tích của hai số bằng 0 khi một trong hai số đó bằng 0
VD : g) x(x+7)=0
⇒ hoặc là x = 0 hoặc là x+7 = 0
( Bạn làm phép tính nhớ bỏ dấu ngoặc vuông trước nhé )
b: \(\Leftrightarrow2\left(4-3x\right)=14\)
=>4-3x=7
=>3x=-3
=>x=-1
c: \(\Leftrightarrow3\left(7-x\right)=-18+12=-6\)
=>7-x=-2
=>x=9
d: \(\Leftrightarrow3x-2=-\dfrac{1}{8}\)
=>3x=15/8
=>x=5/8
e: \(\Leftrightarrow5\left(3x-2x\right)=-15\)
=>x=-3
g: =>x=0 hoặc x+7=0
=>x=0 hoặc x=-7
h: =>x+12=0 hoặc x-3=0
=>x=3 hoặc x=-12
k: =>x=0 hoặc x+2=0 hoặc 7-x=0
=>\(x\in\left\{0;-2;7\right\}\)
l: =>x-1=0 hoặc x+2=0 hoặc x+3=0
=>\(x\in\left\{1;-2;-3\right\}\)
a)\([x.\dfrac{1}{2}]^{3}=\dfrac{1}{27}\)
b)\([x+\dfrac{1}{2} ]^{2}=\dfrac{4}{5} \)
c) I 3x-4/5 I = 11/5
d) I 2x - 2I = 0
\(a,\left(x.\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x.\dfrac{1}{2}=\dfrac{1}{3}\\ \Rightarrow x=\dfrac{1}{3}:\dfrac{1}{2}=\dfrac{2}{3}\\ ---\\ b,\left(x+\dfrac{1}{2}\right)^2=\dfrac{4}{5}=\left(\dfrac{2}{\sqrt{5}}\right)^2=\left(-\dfrac{2}{\sqrt{5}}\right)^2 \\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{2}{\sqrt{5}}\\x+\dfrac{1}{2}=-\dfrac{2}{\sqrt{5}}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{\sqrt{5}}-\dfrac{1}{2}\\x=-\dfrac{2}{\sqrt{5}}-\dfrac{1}{2}\end{matrix}\right.\\ Vậy:x=\pm\dfrac{2}{\sqrt{5}}-\dfrac{1}{2}\)
\(c,\left|3x-\dfrac{4}{5}\right|=\dfrac{11}{5}\\ \Rightarrow\left[{}\begin{matrix}3x-\dfrac{4}{5}=\dfrac{11}{5}\\3x-\dfrac{4}{5}=-\dfrac{11}{5}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}3x=\dfrac{11}{5}+\dfrac{4}{5}=3\\3x=-\dfrac{11}{5}+\dfrac{4}{5}=-\dfrac{7}{5}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{3}=1\\x=-\dfrac{7}{5}:3=-\dfrac{7}{15}\end{matrix}\right.\\ ---\\ d,\left|2x-2\right|=0\\ \Leftrightarrow2x-2=0\\ \Leftrightarrow2x=2\\ \Leftrightarrow x=1\)
a: (x*1/2)^3=1/27
=>x*1/2=1/3
=>x=1/3:1/2=2/3
b: \(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{2}{\sqrt{5}}\\x+\dfrac{1}{2}=-\dfrac{2}{\sqrt{5}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\sqrt{5}}{5}-\dfrac{1}{2}=\dfrac{4\sqrt{5}-5}{10}\\x=\dfrac{-4\sqrt{5}-5}{10}\end{matrix}\right.\)
c: =>3x-4/5=11/5 hoặc 3x-4/5=-11/5
=>3x=3 hoặc 3x=-7/5
=>x=-7/15 hoặc x=1
d: =>2x-2=0
=>2x=2
=>x=1