Bài : Tính
a)A= \(\dfrac{2}{\sqrt{2}-1}\) - \(\sqrt{\dfrac{3}{4}}\) : \(\sqrt{\dfrac{3}{2}}\) +\(\sqrt{8}\)
b)B= \(\sqrt{9x^2}\) +\(\sqrt{x}\) (\(\sqrt{x}\) +1) với x > 0
a \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
b \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)
c \(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}=-4}\)
d \(\sqrt{9x+27}+4\sqrt{x+3}-\dfrac{3}{4}\sqrt{16x+48}=0\)
a: ĐKXĐ: x-5>=0
=>x>=5
\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)
=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
=>\(2\sqrt{x-5}=4\)
=>x-5=4
=>x=9(nhận)
b: ĐKXĐ: x-1>=0
=>x>=1
\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)
=>\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=4\)
=>\(-2\sqrt{x-1}=4\)
=>\(\sqrt{x-1}=-2\)(vô lý)
Vậy: Phương trình vô nghiệm
c: ĐKXĐ: x-2>=0
=>x>=2
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot\sqrt{9x-18}+6\cdot\sqrt{\dfrac{x-2}{81}}=-4\)
=>\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)
=>\(\sqrt{x-2}\left(\dfrac{1}{3}-2+\dfrac{2}{3}\right)=-4\)
=>\(-\sqrt{x-2}=-4\)
=>x-2=16
=>x=18(nhận)
d: ĐKXĐ: x+3>=0
=>x>=-3
\(\sqrt{9x+27}+4\sqrt{x+3}-\dfrac{3}{4}\cdot\sqrt{16x+48}=0\)
=>\(3\sqrt{x+3}+4\sqrt{x+3}-\dfrac{3}{4}\cdot4\sqrt{x+3}=0\)
=>\(4\sqrt{x+3}=0\)
=>x+3=0
=>x=-3(nhận)
a) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
= \(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)
= \(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
= \(2\sqrt{x-5}=4\)
= \(\sqrt{x-5}=2\)
= \(\left|x-5\right|=4\)
=> \(x-5=\pm4\)
\(x=\pm4+5\)
\(x=9;x=1\)
Vậy x=9; x=1
b) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)
\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=4\)
\(-2\sqrt{x-1}=4\)
\(\sqrt{x-1}=-2\)
=>\(\left|x-1\right|=-2\)
\(x-1=\mp2\)
\(x=-3;x=1\)
Vậy x=-3; x=1
1) Tính giá trị biểu thức:
a)A=\(\sqrt{4+2\sqrt{3}}\)
b) B=\(\dfrac{1}{2-\sqrt{3}}+\dfrac{1}{2+\sqrt{3}}\)
2) Giai phương trình: \(\sqrt{4x-12}+\sqrt{x-3}-\dfrac{1}{3}\sqrt{9x-27}=8\)
3)Tìm x: 2x2-4=8
`a)A=\sqrt{4+2sqrt3}`
`=\sqrt{3+2sqrt3+1}`
`=sqrt{(sqrt3+1)^2}`
`=sqrt3+1`
`B)1/(2-sqrt3)+1/(2+sqrt3)`
`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`
`=2+sqrt3+2-sqrt3`
`=4`
`\sqrt{4x-12}+sqrtx{x-3}-1/3sqrt{9x-27}=8`
`đk:x>=3`
`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`
`<=>2sqrt{x-3}=8`
`<=>sqrt{x-3}=4`
`<=>x-3=16`
`<=>x=19`
Vậy `S={19}`
`a)A=\sqrt{4+2sqrt3}`
`=\sqrt{3+2sqrt3+1}`
`=sqrt{(sqrt3+1)^2}`
`=sqrt3+1`
`B)1/(2-sqrt3)+1/(2+sqrt3)`
`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`
`=2+sqrt3+2-sqrt3`
`=4`
`\sqrt{4x-12}+sqrt{x-3}-1/3sqrt{9x-27}=8`
`đk:x>=3`
`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`
`<=>2sqrt{x-3}=8`
`<=>sqrt{x-3}=4`
`<=>x-3=16`
`<=>x=19`
Vậy `S={19}`
Rút gọn các biểu thức sau:
a) \(A=3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+30\), \(x\ge0\)
b) \(B=4\sqrt{\dfrac{25x}{4}}-\dfrac{8}{3}\sqrt{\dfrac{9x}{4}}-\dfrac{4}{3x}\sqrt{\dfrac{9x^3}{64}}\), \(x>0\)
c) \(C=\dfrac{y}{2}+\dfrac{3}{4}\sqrt{1+9y^2-6y}-\dfrac{3}{2}\), \(y\le\dfrac{1}{3}\)
a) Ta có: \(A=3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+30\)
\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+30\)
\(=14\sqrt{2x}+30\)
b) Ta có: \(B=4\sqrt{\dfrac{25x}{4}}-\dfrac{8}{3}\sqrt{\dfrac{9x}{4}}-\dfrac{4}{3x}\cdot\sqrt{\dfrac{9x^3}{64}}\)
\(=4\cdot\dfrac{5\sqrt{x}}{2}-\dfrac{8}{3}\cdot\dfrac{3\sqrt{x}}{2}-\dfrac{4}{3x}\cdot\dfrac{3x\sqrt{x}}{8}\)
\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)
\(=\dfrac{11}{2}\sqrt{x}\)
c) Ta có: \(\dfrac{y}{2}+\dfrac{3}{4}\sqrt{9y^2-6y+1}-\dfrac{3}{2}\)
\(=\dfrac{1}{2}y+\dfrac{3}{4}\left(1-3y\right)-\dfrac{3}{2}\)
\(=\dfrac{1}{2}y+\dfrac{3}{4}-\dfrac{9}{4}y-\dfrac{3}{2}\)
\(=-\dfrac{7}{4}y-\dfrac{3}{4}\)
bài 1: rút gọn bthuc
a.\(\dfrac{a+\sqrt{a}}{\sqrt{a}}\) b.\(\dfrac{\sqrt{\left(x-3\right)^2}}{3-x}\)
b2: rút gọn
a.\(\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}\) b.4-x-\(\sqrt{4-4x+x^2}\) c.\(\sqrt{4x^2-4x\text{x^2 +2*x-3 >0}}-\sqrt{4x^2+4x+1}\)
Bài 1:
a) \(\dfrac{a+\sqrt{a}}{\sqrt{a}}=\sqrt{a}+1\)
b) \(\dfrac{\sqrt{\left(x-3\right)^2}}{3-x}=\dfrac{\left|x-3\right|}{3-x}=\pm1\)
Bài 2:
a) \(\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}=\dfrac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}=\pm\dfrac{1}{3x+1}\)
b) \(4-x-\sqrt{x^2-4x+4}=4-x-\left|x-2\right|=\left[{}\begin{matrix}6-2x\left(x\ge2\right)\\2\left(x< 2\right)\end{matrix}\right.\)
GIẢI PHƯƠNG TRÌNH
a) \(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\)
b) \(\sqrt{9x^2+12x+4}=4x\)
c) \(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
d) \(\sqrt{5x-6}-3=0\)
a: \(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)
\(\Leftrightarrow\sqrt{x-2}=4\)
=>x-2=16
hay x=18
b: \(\Leftrightarrow\left|3x+2\right|=4x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=4x\left(x>=-\dfrac{2}{3}\right)\\3x+2=-4x\left(x< -\dfrac{2}{3}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-\dfrac{2}{7}\left(nhận\right)\end{matrix}\right.\)
c: \(\Leftrightarrow3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)
\(\Leftrightarrow4\sqrt{x-2}=40\)
=>x-2=100
hay x=102
d: =>5x-6=9
hay x=3
\(a,\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\left(dk:x\ge2\right)\)
\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\Leftrightarrow\sqrt{x-2}=4\)
\(\Leftrightarrow x-2=16\)
\(\Leftrightarrow x=18\left(tmdk\right)\)
b,\(\sqrt{9x^2-12x+4=3x\left(dk:x\ge0\right)}\)
\(\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x\)
\(\Leftrightarrow\left|3x-2\right|=3x\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2=3x\\3x-2=-3x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\varnothing\\x=\dfrac{1}{3}\left(tmdk\right)\end{matrix}\right.\)
Các câu còn lại làm tương tự nhé
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: x≥2)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+6\sqrt{\dfrac{1}{81}\left(x-2\right)}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{4}{3}\sqrt{x-2}=-4\)
\(-\sqrt{x-2}=-4\)
\(\sqrt{x-2}=4\)
\(\left|x-2\right|=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=16\\x-2=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\left(TM\right)\\x=-14\left(L\right)\end{matrix}\right.\)
Giải phương trình :
a) \(\sqrt{2x^2-\sqrt{2}x+\dfrac{1}{4}}=\sqrt{2}x\)
b)\(\sqrt{4x+8}+\dfrac{1}{3}\sqrt{9x+18}=3\sqrt{\dfrac{x+2}{4}}+\sqrt{2}\)
b: Ta có: \(\sqrt{4x+8}+\dfrac{1}{3}\sqrt{9x+18}=3\sqrt{\dfrac{x+2}{4}}+\sqrt{2}\)
\(\Leftrightarrow2\sqrt{x+2}+\dfrac{1}{3}\cdot3\sqrt{x+2}-\dfrac{3}{2}\sqrt{x+2}=\sqrt{2}\)
\(\Leftrightarrow\sqrt{x+2}\cdot\dfrac{3}{2}=\sqrt{2}\)
\(\Leftrightarrow\sqrt{x+2}=\dfrac{2\sqrt{2}}{3}\)
\(\Leftrightarrow x+2=\dfrac{8}{9}\)
hay \(x=-\dfrac{10}{9}\)
Câu 2: Giải các phương trình sau:
a. \(\sqrt{4x-8}\) - \(\sqrt{x-2}\) - 4 + \(\dfrac{1}{3}\)\(\sqrt{9x-18}\)
b. \(\sqrt{x^2-6x+9}\) - \(\dfrac{\sqrt{6+\sqrt{3}}}{\sqrt{2}+1}\)=0
b: Ta có: \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)
\(\Leftrightarrow x^2-6x+9=3\)
\(\Leftrightarrow x^2-6x+6=0\)
\(\text{Δ}=\left(-6\right)^2-4\cdot1\cdot6=36-24=12\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{3}}{2}=3-\sqrt{3}\\x_2=3+\sqrt{3}\end{matrix}\right.\)
Bài 1: Cho biểu thức A = 1 - \(\dfrac{\sqrt{x}}{1+\sqrt{x}}\), B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)+ \(\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\)- \(\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với x ≥ 0, x ≠ 4, x ≠ 9)
a, Tính giá trị của A biết x = 6-2\(\sqrt{5}\)
b, Rút gọn P = A : B
c, Tìm giá trị nhỏ nhất của P
a: Thay \(x=6-2\sqrt{5}\) vào A, ta được:
\(A=1-\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=1-\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)
b: Ta có: P=A:B
\(=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{x-5\sqrt{x}+6}\right)\)
\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Giải các phương trình sau:
a) \(\sqrt{x^2-4+4}=2-x\)
b) \(\sqrt{4x-8}-\dfrac{1}{5}\sqrt{25x-50}=3\sqrt{x-2}-1\)
c) \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)
d) \(\dfrac{1}{2}\sqrt{x-2}-4\sqrt{\dfrac{4x-8}{9}}+\sqrt{9x-18}-5=0\)
e)\(\sqrt{49-28x+4x^2}-5=0\)
f) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
g) x2 - 4x - 2\(\sqrt{2x-5}+5=0\)
h)\(\sqrt{3x-2}=\sqrt{x+1}\)
i) x + y + z + 8 = \(2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
k) \(\sqrt{x^2-3x}-\sqrt{x-3}=0\)
l)\(\sqrt{x^2-4}+\sqrt{x-2}=0\)
m) \(4\sqrt{x+1}=x^2-5x+14\)
n) \(\sqrt{x^2-6x+9}-\sqrt{4x^2+4x+1}=0\)
c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)
\(\Leftrightarrow2\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=4\)
hay x=5
e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)
\(\Leftrightarrow\left|2x-7\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
a. ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$
$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$
$\Leftrightarrow x\leq 2$
b. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$
$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$
$\Leftrightarrow 1=2\sqrt{x-2}$
$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$
$\Leftrightarrow \frac{1}{4}=x-2$
$\Leftrightarrow x=\frac{9}{4}$ (tm)
c. ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow \sqrt{x-1}+\sqrt{9}.\sqrt{x-1}-\sqrt{4}.\sqrt{x-1}=4$
$\Leftrightarrow \sqrt{x-1}+3\sqrt{x-1}-2\sqrt{x-1}=4$
$\Leftrightarrow 2\sqrt{x-1}=4$
$\Leftrightarrow \sqrt{x-1}=2$
$\Leftrightarrow x-1=4$
$\Leftrightarrow x=5$ (tm)
d. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \frac{1}{2}\sqrt{x-2}-4\sqrt{\frac{4}{9}}\sqrt{x-2}+\sqrt{9}.\sqrt{x-2}-5=0$
$\Leftrightarrow \frac{1}{2}\sqrt{x-2}-\frac{8}{3}\sqrt{x-2}+3\sqrt{x-2}-5=0$
$\Leftrightarrow \frac{5}{6}\sqrt{x-2}-5=0$
$\Leftrightarrow \sqrt{x-2}=6$
$\Leftrightarrow x-2=36$
$\Leftrightarrow x=38$ (tm)