Giai pt: \(\sqrt{\left(x^2+2\right)^2}=x^2+2x+5\)
Giai pt
\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\)
\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\left(-4\le x\le4\right)\)
Dễ thấy x=0 là nghiệm của phương trình (1)
Xét x\(\ne\)0.Nhân cả 2 vế của (1) với \(\left(\sqrt{4+x}+2\right)\) được
\(x\left(\sqrt{4-x}+2\right)=-2x\left(\sqrt{4+x}+2\right)\)
\(\Rightarrow\sqrt{4-x}+2=-2\left(\sqrt{4+x}+2\right)\)
\(\Rightarrow\sqrt{4-x}=-2\sqrt{4+x}-6\)
\(\Rightarrow\sqrt{4-x}< 0\)(vô nghiệm)
Vậy nghiệm của phương trình (1) là x=0
-Chúc bạn học tốt-
Bài giải:
Điều kiện:\(\left\{{}\begin{matrix}x+4\ge0\\4-x\ge0\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x\ge-4\\x\le4\end{matrix}\right.\)⇔\(-4\le x\le4\)
Pt: \(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\)
⇔\(\dfrac{x+4-4}{\sqrt{x+4}+2}\left(\sqrt{4-x}+2\right)=-2x\)
⇔\(\dfrac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}+2x=0\)
⇔\(x\left(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}+2\right)=0\)
⇔\(x=0\left(tm\right)\)
Vì \(\sqrt{4-x}+2>0\) và \(\sqrt{x+4}+2>0\) với mọi x
Nên \(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}>0\) ⇒ \(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}+2>0\)
Vậy pt có nghiệm duy nhất là \(x=0\)
Giai pt
\(\left(\sqrt{2x+3}+2\right).\left(\sqrt{x+6}-\sqrt{x+1}\right)=5\)
\(\left(\sqrt{2x+3}+2\right)\left(\sqrt{x+6}-\sqrt{x+1}\right)=5\)
\(ĐKXĐ:x\ge-1\).Nhận thấy \(\sqrt{x+6}-\sqrt{x+1}>0\)
\(\Leftrightarrow\left(\sqrt{2x+3}+2\right)\frac{\left(\sqrt{x+6}+\sqrt{x+1}\right)\left(\sqrt{x+6}-\sqrt{x+1}\right)}{\sqrt{x+6}-\sqrt{x+1}}=5\)
\(\Leftrightarrow\left(\sqrt{2x+3}+2\right)\frac{5}{\sqrt{x+6}-\sqrt{x+1}}=5\)
\(\Leftrightarrow\frac{\sqrt{2x+3}+2}{\sqrt{x+6}-\sqrt{x+1}}=1\)
\(\Leftrightarrow\sqrt{2x+3}+2-\sqrt{x+6}+\sqrt{x+1}=0\)
Th1:\(\sqrt{x+1}=2\Leftrightarrow x=3\left(thoaman\right)\)
Th2:\(\sqrt{x+1}-2\ne0\Leftrightarrow x\ne3\)
\(\Leftrightarrow\left(\sqrt{2x+3}-\sqrt{x+6}\right)+\left(2+\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{2x+3}+\sqrt{x+6}}+\frac{x-3}{\sqrt{x+1}-2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{2x+3}+\sqrt{x+6}}+\frac{1}{\sqrt{x+1}-2}\right)=0\)
Tự lm tiếp nha
Giai pt
\(\sqrt{2x+1}-2\sqrt{2-x}=3\sqrt[4]{\left(1-2x\right)\left(x-2\right)}\)
giai pt sau
\(\sqrt{3x-1}-\sqrt{x+2}.\sqrt{3x^2+7x+2}+4=4x-2\)
\(x^2-5x+3.\sqrt{2x-1}=2.\sqrt{14-2x}+5\)
\(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
nhiều thế giải ko đổi đâu bạn
đkxđ : \(\frac{1}{2}\le x\le7\)
\(x^2-5x+3\sqrt{2x-1}=2\sqrt{14-2x}+5\)
\(\Leftrightarrow\left(x^2-5x\right)+3\left(\sqrt{2x-1}-3\right)=2\left(\sqrt{14-2x}-2\right)\)
\(\Leftrightarrow x\left(x-5\right)+\frac{3.\left(2x-10\right)}{\sqrt{2x-1}+3}+\frac{2.\left(2x-10\right)}{\sqrt{14-2x}+2}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+\frac{6}{\sqrt{2x-1}+3}+\frac{4}{\sqrt{14-2x}+2}\right)=0\)
\(\Leftrightarrow x=5\)
còn bài a,c lười đánh lắm
Giai pt:\(\sqrt{\left(5-2\sqrt{6}\right)^x}+\sqrt{\left(5+2\sqrt{6}\right)^x}=10\)
Nhận xét : \(\sqrt{\left(5-2\sqrt{6}\right)^x}.\sqrt{\left(5+2\sqrt{6}\right)^x}=1\)
Ta đặt \(\sqrt{\left(5-2\sqrt{6}\right)^x}=a\Rightarrow\sqrt{\left(5+2\sqrt{6}\right)^x}=\frac{1}{a}\)
Khi đó phương trình ban đầu trở thành :
\(a+\frac{1}{a}=10\Rightarrow a^2-10a+1=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=5+2\sqrt{6}\\a=5-2\sqrt{6}\end{cases}}\)
+) Với \(a=5+2\sqrt{6}\Rightarrow\sqrt{\left(5-2\sqrt{6}\right)^x}=5+2\sqrt{6}\)
\(\Leftrightarrow\left(5-2\sqrt{6}\right)^x=\left(5+2\sqrt{6}\right)^2=\left(\frac{1}{5-2\sqrt{6}}\right)^2\)
\(\Leftrightarrow x=-2\)
+) Với \(a=5-2\sqrt{6}\Rightarrow\sqrt{\left(5-2\sqrt{6}\right)^x}=5-2\sqrt{6}\)
\(\Leftrightarrow\left(5-2\sqrt{6}\right)^x=\left(5-2\sqrt{6}\right)^2\)
\(\Leftrightarrow x=2\)
Vậy \(x\in\left\{-2,2\right\}\) thỏa mãn đề.
1. Cho pt: x2 -2(m+1)x+m2=0 (1). Tìm m để pt có 2 nghiệm x1 ; x2 thỏa mãn (x1-m)2 + x2=m+2.
2. Giai pt: \(\left(x-1\right)\sqrt{2\left(x^2+4\right)}=x^2-x-2\)
3. Giai hệ pt: \(\left\{{}\begin{matrix}\frac{1}{\sqrt[]{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{matrix}\right.\)
4. Giai pt trên tập số nguyên \(x^{2015}=\sqrt{y\left(y+1\right)\left(y+2\right)\left(y+3\right)}+1\)
Giai pt: \(\sqrt{\left(5-2\sqrt{6}\right)^x}+\sqrt{\left(5+2\sqrt{6}\right)^x}=10\)
\(\left(5-2\sqrt{6}\right)^{\frac{x}{2}}+\left(5+2\sqrt{6}\right)^{\frac{x}{2}}=10\)
\(pt\Leftrightarrow\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^{2x}}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^{2x}}=10\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^x+\left(\sqrt{3}+\sqrt{2}\right)^x=10\)
\(\Leftrightarrow\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^x}+\left(\sqrt{3}+\sqrt{2}\right)^x=10\)
\(\Leftrightarrow\frac{1}{t}+t=10\left(t=\left(\sqrt{3}+\sqrt{2}\right)^x\right)\)
\(\Leftrightarrow t^2-10t+1=0\)\(\Leftrightarrow t=5\pm2\sqrt{6}\)
\(\Rightarrow5\pm2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^x\)
\(\Leftrightarrow\left(\sqrt{3}+\sqrt{2}\right)^{\pm2}=\left(\sqrt{3}+\sqrt{2}\right)^x\)
\(\Rightarrow x=\pm2\). Vậy...
Giai pt
1) \(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\)
2) \(\frac{x}{x+1}-2\sqrt{\frac{x+1}{x}}-3=0\)
3) \(x^2+\sqrt{2x^2+4x+3}=6-2x\)
4) \(x^2+\sqrt{x+5}=5\)
5) \(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)
5) \(ĐK:x\ge-\frac{3}{2}\)
\(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)
\(\Leftrightarrow\frac{x^3+4x}{2x+7}=\sqrt{2x+3}\Leftrightarrow\frac{x^3+4x}{2x+7}-3=\sqrt{2x+3}-3\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+3x+7\right)}{2x+7}=\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+3x+7}{2x+7}-\frac{2}{\sqrt{2x+3}+3}\right)=0\)
(không có nghiệm thực)
Vậy phương trình có 1 nghiệm duy nhất là 3
1) \(Pt\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)( đk: \(x\le-3,x\ge0\)
Đặt \(t=\sqrt{x^2+3x},t\ge0\)
Pt trở thành: \(-t^2-3t+10=0\Leftrightarrow t=2\left(dot\ge0\right)\)
giải \(\sqrt{x^2+3x}=2\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
3) \(x^2+\sqrt{2x^2+4x+3}=6-2x\Leftrightarrow-\sqrt{2x^2+4x+3}=x^2+2x-6\)\(\Leftrightarrow\left(2x^2+4x+3\right)-15=-2\sqrt{2x^2+4x+3}\)
Đặt \(\sqrt{2x^2+4x+3}=t\)(t > 0) thì phương trình trở thành \(t^2-15=-2t\Leftrightarrow t^2+2t-15=0\Leftrightarrow\left(t+5\right)\left(t-3\right)=0\Leftrightarrow\orbr{\begin{cases}t=-5\left(L\right)\\t=3\left(tm\right)\end{cases}}\)
Với t = 3 thì \(\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x+3=9\Leftrightarrow2x^2+4x-6=0\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)Vậy phương trình có tập nghiệm S = {1; -3}
giai pt:
a) \(\sqrt{x^2-4x-12}=9-2x\)
b) \(\left(x+1\right)\sqrt[3]{15x^2-x-1}=x^2-1\)
c) \(\left(2x-2\right)\sqrt{2x-1}=6\left(x-1\right)\)
d) \(\frac{\sqrt{-x^2+4x-3}-1}{x-3}=2\)
e) \(\frac{5+\sqrt{x+1}}{x-2}=7\)
Đệ biết là có người làm câu c,d nên xin xí câu e :3
ĐK: \(\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)
\(PT\Leftrightarrow5+\sqrt{x+1}=7\left(x-2\right)\)
\(\Leftrightarrow\sqrt{x+1}=7x-19\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\x+1=49x^2-266x+361\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\49x^2-267x+360=0\end{matrix}\right.\)
\(\Rightarrow x=3\left(tm\right)\)
a/ \(\Leftrightarrow\left\{{}\begin{matrix}9-2x\ge0\\x^2-4x-12=\left(9-2x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{9}{2}\\3x^2-32x+93=0\end{matrix}\right.\)
Phương trình vô nghiệm
b/ \(\Leftrightarrow\left(x+1\right)\sqrt[3]{15x^2-x-1}-\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\sqrt[3]{15x^2-x-1}-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\Rightarrow x=-1\\\sqrt[3]{15x^2-x-1}-x+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt[3]{15x^2-x-1}=x-1\)
\(\Leftrightarrow15x^2-x-1=x^3-3x^2+3x-1\)
\(\Leftrightarrow x^3-18x^2+4x=0\)
\(\Leftrightarrow x\left(x^2-18x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=9\pm\sqrt{77}\\\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow2\left(x-1\right)\sqrt{2x-1}-6\left(x-1\right)=0\)
\(\Leftrightarrow2\left(x-1\right)\left(\sqrt{2x-1}-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{2x-1}-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\2x-1=9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
d/ ĐKXĐ: \(1\le x< 3\)
\(\Leftrightarrow\sqrt{-x^2+4x-3}-1=2x-6\)
\(\Leftrightarrow\sqrt{-x^2+4x-3}=2x-5\) (\(x\ge\frac{5}{2}\))
\(\Leftrightarrow-x^2+4x-3=\left(2x-5\right)^2\)
\(\Leftrightarrow5x^2-24x+28=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2< \frac{5}{2}\left(l\right)\\x=\frac{14}{5}\end{matrix}\right.\)
e/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)
\(\Leftrightarrow5+\sqrt{x+1}=7x-14\)
\(\Leftrightarrow\sqrt{x+1}=7x-19\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\x+1=\left(7x-19\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\49x^2-267x+360=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\x=\frac{120}{49}< \frac{19}{7}\left(l\right)\end{matrix}\right.\)