Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hải Yến Lê
Xem chi tiết
Chiến Nguyễn Trọng
13 tháng 12 2022 lúc 22:52

\(\Rightarrow\sqrt{2}.sin\left(3x-\dfrac{\pi}{4}\right)-\sqrt{2}.sin\left(5x-\dfrac{\pi}{3}\right)=0\Leftrightarrow sin\left(3x-\dfrac{\pi}{4}\right)=sin\left(5x-\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{4}+k2\pi=5x-\dfrac{\pi}{3}\\\pi-3x+\dfrac{\pi}{4}+k2\pi=5x-\dfrac{\pi}{3}\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{\pi}{12}+k\pi\\x=\dfrac{19\pi}{96}+\dfrac{k\pi}{4}\end{matrix}\right.\); k\(\in Z\)

 

M Thiện Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 14:02

\(\Leftrightarrow cos3x+\sqrt{3}sin3x=\sqrt{3}cosx+sinx\)

\(\Leftrightarrow\dfrac{1}{2}cos3x+\dfrac{\sqrt{3}}{2}sin3x=\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx\)

\(\Leftrightarrow cos\left(3x-\dfrac{\pi}{3}\right)=cos\left(x-\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\\3x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+k\pi\\x=\dfrac{\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Tun Duong
Xem chi tiết
Hoàng Tử Hà
23 tháng 10 2020 lúc 0:26

Hình như câu này tui từng đi hỏi anh Lâm thì phải :D

\(\sin3x+\cos3x=3\sin x-4\sin^3x+4\cos^3x-3\cos x\)

\(=3\left(\sin x-\cos x\right)-4\left(\sin x-\cos x\right)\left(\sin^2x+\sin x\cos x+\cos^2x\right)=\left(\cos x-\sin x\right)\left(4\sin x\cos x+1\right)=\left(\cos x-\sin x\right)\left(1+2\sin2x\right)\)

\(\Leftrightarrow\sqrt{3}\cos x=\sin x\Leftrightarrow\sin\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)

Bạn tự giải nốt, nhớ đối chiếu đkxd nhó

Khách vãng lai đã xóa
Kinder
Xem chi tiết
Hồng Phúc
1 tháng 6 2021 lúc 9:13

1.

\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)

\(\Leftrightarrow sinx-\sqrt{3}cosx=\sqrt{2}cos3x+\sqrt{2}sin3x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{\sqrt{2}}cos3x+\dfrac{1}{\sqrt{2}}sin3x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin\left(3x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=3x+\dfrac{\pi}{4}+k2\pi\\x-\dfrac{\pi}{3}=\pi-3x-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7\pi}{24}-k\pi\\x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=-\dfrac{7\pi}{24}-k\pi;x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\)

Hồng Phúc
1 tháng 6 2021 lúc 9:23

2.

\(sinx-\sqrt{3}cosx=2sin5\text{​​}x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=sin5x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin5x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=5x+k2\pi\\x-\dfrac{\pi}{3}=\pi-5x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2}\\x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2};x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\)

Big City Boy
Xem chi tiết
Tieen Ddat dax quay trow...
15 tháng 8 2023 lúc 16:06

Tham khảo

⇔3sinx−4sin3x+4cos3x−3cosx−2cosx+2sinx+1=0⇔3sin⁡�−4sin3⁡�+4cos3⁡�−3cos⁡�−2cos⁡�+2sin⁡�+1=0⇔4[(cosx−sinx)3+3cosx.sinx(cosx−sinx)]−5(cosx−sinx)+1=0⇔4[(cos⁡�−sin⁡�)3+3cos⁡�.sin⁡�(cos⁡�−sin⁡�)]−5(cos⁡�−sin⁡�)+1=0⇔cosx.sinπ4−sinx.cosπ4=1√2⇔cos⁡�.sin⁡�4−sin⁡�.cos⁡�4=12

⇔⎡⎢⎣π4−x=π4−2kπ⇒x=2kππ4−x=π−π4−2kπ⇒x=−π2+2kπ

Violet
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 10 2020 lúc 0:54

7.

ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(\frac{\pi}{4}-x\right).sin\left(\frac{\pi}{4}+x\right)\ne0\\cos\left(\frac{\pi}{4}-x\right)cos\left(\frac{\pi}{4}+x\right)\ne0\end{matrix}\right.\)

\(\Leftrightarrow cos2x\ne0\)

Phương trình tương đương:

\(\Leftrightarrow\frac{sin^42x+cos^42x}{tan\left(\frac{\pi}{4}-x\right).cot\left(\frac{\pi}{2}-\frac{\pi}{4}-x\right)}=cos^44x\)

\(\Leftrightarrow\frac{sin^42x+cos^42x}{tan\left(\frac{\pi}{4}-x\right).cot\left(\frac{\pi}{4}-x\right)}=cos^24x\)

\(\Leftrightarrow sin^42x+cos^42x=cos^44x\)

\(\Leftrightarrow\left(sin^22x+cos^22x\right)^2-2sin^22x.cos^22x=cos^44x\)

\(\Leftrightarrow1-\frac{1}{2}sin^24x=cos^44x\)

\(\Leftrightarrow2-\left(1-cos^24x\right)=2cos^44x\)

\(\Leftrightarrow2cos^44x-cos^24x-1=0\)

\(\Leftrightarrow\left(cos^24x-1\right)\left(2cos^24x+1\right)=0\)

\(\Leftrightarrow cos^24x-1=0\)

\(\Leftrightarrow sin^24x=0\Leftrightarrow sin4x=0\)

\(\Leftrightarrow2sin2x.cos2x=0\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
12 tháng 10 2020 lúc 0:34

1.

\(cos2x+5=2\left(2-cosx\right)\left(sinx-cosx\right)\)

\(\Leftrightarrow2cos^2x+4=4sinx-4cosx-2sinx.cosx+2cos^2x\)

\(\Leftrightarrow2sinx.cosx-4\left(sinx-cosx\right)+4=0\)

Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=1-t^2\end{matrix}\right.\)

Pt trở thành:

\(1-t^2-4t+4=0\)

\(\Leftrightarrow t^2+4t-5=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-5\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
12 tháng 10 2020 lúc 0:35

2.

\(\Leftrightarrow\left(sinx-1\right)^2+1=sin^23x\)

Ta có \(VT\ge1\) trong khi \(VP\le1\) với mọi x

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}sinx-1=0\\sin^23x=1\end{matrix}\right.\) \(\Leftrightarrow x=\frac{\pi}{2}+k2\pi\)

3.

\(\Leftrightarrow-2cos2x.sinx-2sin2x=2\sqrt{2}\)

\(\Leftrightarrow cos2x.sinx+sin2x=-\sqrt{2}\)

Ta có:

\(VT^2=\left(cos2x.sinx+sin2x.1\right)^2\le\left(cos^22x+sin^22x\right)\left(sin^2x+1\right)\le1\left(1+1\right)=2\)

\(\Rightarrow VT\ge-\sqrt{2}\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}sinx=1\\cos2x=sinx.sin2x\end{matrix}\right.\) (ko tồn tại x thỏa mãn)

Vậy pt vô nghiệm

Khách vãng lai đã xóa
Hồ Minh Phi
Xem chi tiết
Trung Nguyen
16 tháng 12 2020 lúc 23:24

\(\Leftrightarrow3\sin x-4\sin^3x+4\cos^3x-3\cos x-2\cos x+2\sin x+1=0\)\(\Leftrightarrow4\left[\left(\cos x-\sin x\right)^3+3\cos x.\sin x\left(\cos x-\sin x\right)\right]-5\left(\cos x-\sin x\right)+1=0\)\(\Leftrightarrow4\left[\left(\cos x-\sin x\right)^3+3\dfrac{\left(\cos x-\sin x\right)^2-1}{2}\left(\cos x-\sin x\right)\right]-5\left(\cos x-\sin x\right)+1=0\)Đặt cosx-sinx=a. Thay vào giải pt ta tìm được: a=1

<=> cosx-sinx=1 

\(\Leftrightarrow\cos x.\sin\dfrac{\pi}{4}-\sin x.\cos\dfrac{\pi}{4}=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\sin\left(\dfrac{\pi}{4}-x\right)=\sin\dfrac{\pi}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\pi}{4}-x=\dfrac{\pi}{4}-2k\pi\Rightarrow x=2k\pi\\\dfrac{\pi}{4}-x=\pi-\dfrac{\pi}{4}-2k\pi\Rightarrow x=-\dfrac{\pi}{2}+2k\pi\end{matrix}\right.\)

Tường Nguyễn Thế
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 10 2019 lúc 20:19

ĐKXĐ:...

Biến đổi đoạn trong ngoặc trước cho đỡ rối:

\(cos4x+sin2x=cos\left(3x+x\right)+sin\left(3x-x\right)\)

\(=cos3x.cosx-sin3x.sinx+sin3x.cosx-cos3x.sinx\)

\(=cosx\left(cos3x+sin3x\right)-sinx\left(cos3x+sin3x\right)\)

\(=\left(cosx-sinx\right)\left(cos3x+sin3x\right)\)

Thay vào phương trình:

\(\left(cosx-sinx\right)^2=2\left(sinx+cosx\right)+3\)

\(\Leftrightarrow1-2sinx.cosx=2\left(sinx+cosx\right)+3\)

Đặt \(sinx+cosx=a\Rightarrow-2sinx.cosx=1-a^2\)

\(2-a^2=2a+3\Rightarrow a=-1\Rightarrow sinx+cosx=-1\Rightarrow...\)

Huyen My
Xem chi tiết