Giải phương trình:
\(\sqrt{2}\left(sin3x+cos3x\right)=\sqrt{1+2sin6x+2sin2x}\)
Giải phương trình:
\(sin3x-cos3x-\sqrt{2}sin\left(5x-\dfrac{\pi}{3}\right)=0\)
\(\Rightarrow\sqrt{2}.sin\left(3x-\dfrac{\pi}{4}\right)-\sqrt{2}.sin\left(5x-\dfrac{\pi}{3}\right)=0\Leftrightarrow sin\left(3x-\dfrac{\pi}{4}\right)=sin\left(5x-\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{4}+k2\pi=5x-\dfrac{\pi}{3}\\\pi-3x+\dfrac{\pi}{4}+k2\pi=5x-\dfrac{\pi}{3}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{\pi}{12}+k\pi\\x=\dfrac{19\pi}{96}+\dfrac{k\pi}{4}\end{matrix}\right.\); k\(\in Z\)
Giải phương trình lượng giác bậc nhất đối với sinx và cosx:
\(cos3x-sinx=\sqrt{3}\left(cosx-sin3x\right)\)
\(\Leftrightarrow cos3x+\sqrt{3}sin3x=\sqrt{3}cosx+sinx\)
\(\Leftrightarrow\dfrac{1}{2}cos3x+\dfrac{\sqrt{3}}{2}sin3x=\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx\)
\(\Leftrightarrow cos\left(3x-\dfrac{\pi}{3}\right)=cos\left(x-\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\\3x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+k\pi\\x=\dfrac{\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.\)
\(\sqrt{3}\) x(\(\sin x+\frac{sin3x+cos3x}{1+2sin2x}\))=\(cos\left(x-\frac{\Pi}{2}\right)\)
Hình như câu này tui từng đi hỏi anh Lâm thì phải :D
\(\sin3x+\cos3x=3\sin x-4\sin^3x+4\cos^3x-3\cos x\)
\(=3\left(\sin x-\cos x\right)-4\left(\sin x-\cos x\right)\left(\sin^2x+\sin x\cos x+\cos^2x\right)=\left(\cos x-\sin x\right)\left(4\sin x\cos x+1\right)=\left(\cos x-\sin x\right)\left(1+2\sin2x\right)\)
\(\Leftrightarrow\sqrt{3}\cos x=\sin x\Leftrightarrow\sin\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)
Bạn tự giải nốt, nhớ đối chiếu đkxd nhó
Giải pt
\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)
\(sinx-\sqrt{3}cosx=2sin5x\)
\(\sqrt{3}cos5x-2sin3xcos2x-sinx=0\)
\(sinx+cosxsin2x+\sqrt{3}cos3x=2\left(cos4x-sin^3x\right)\)
\(tanx-3cotx=4\left(sinx+\sqrt{3}cosx\right)\)
1.
\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)
\(\Leftrightarrow sinx-\sqrt{3}cosx=\sqrt{2}cos3x+\sqrt{2}sin3x\)
\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{\sqrt{2}}cos3x+\dfrac{1}{\sqrt{2}}sin3x\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin\left(3x+\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=3x+\dfrac{\pi}{4}+k2\pi\\x-\dfrac{\pi}{3}=\pi-3x-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7\pi}{24}-k\pi\\x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm \(x=-\dfrac{7\pi}{24}-k\pi;x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\)
2.
\(sinx-\sqrt{3}cosx=2sin5\text{}x\)
\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=sin5x\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin5x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=5x+k2\pi\\x-\dfrac{\pi}{3}=\pi-5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2}\\x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm \(x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2};x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\)
Giải:\(sin3x+cos3x-2\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)+1=0\)
Tham khảo
⇔3sinx−4sin3x+4cos3x−3cosx−2cosx+2sinx+1=0⇔3sin�−4sin3�+4cos3�−3cos�−2cos�+2sin�+1=0⇔4[(cosx−sinx)3+3cosx.sinx(cosx−sinx)]−5(cosx−sinx)+1=0⇔4[(cos�−sin�)3+3cos�.sin�(cos�−sin�)]−5(cos�−sin�)+1=0⇔cosx.sinπ4−sinx.cosπ4=1√2⇔cos�.sin�4−sin�.cos�4=12
⇔⎡⎢⎣π4−x=π4−2kπ⇒x=2kππ4−x=π−π4−2kπ⇒x=−π2+2kπ
1)\(cos2x+5=2\sqrt{2}\left(2-cosx\right)sin\left(x-\frac{\pi}{4}\right)\)
2)
\(sin^2x-2sinx+2=sin^23x\)
3)
\(sinx-2sin2x-sin3x=2\sqrt{2}\)
4)
\(\left(cos4x-cos2x\right)^2=5+sin3x\)
5)
\(\sqrt{5+sin^23x=sinx+2cosx}\)
6)
\(5\left(sinx+\frac{cos3x+sin3x}{1+2sin2x}\right)=cos2x+3\)
7)
\(\frac{sin^42x+cos^42x}{tan\left(\frac{\pi}{4}-x\right)tan\left(\frac{\pi}{4}+x\right)}=cos^44x\)
7.
ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(\frac{\pi}{4}-x\right).sin\left(\frac{\pi}{4}+x\right)\ne0\\cos\left(\frac{\pi}{4}-x\right)cos\left(\frac{\pi}{4}+x\right)\ne0\end{matrix}\right.\)
\(\Leftrightarrow cos2x\ne0\)
Phương trình tương đương:
\(\Leftrightarrow\frac{sin^42x+cos^42x}{tan\left(\frac{\pi}{4}-x\right).cot\left(\frac{\pi}{2}-\frac{\pi}{4}-x\right)}=cos^44x\)
\(\Leftrightarrow\frac{sin^42x+cos^42x}{tan\left(\frac{\pi}{4}-x\right).cot\left(\frac{\pi}{4}-x\right)}=cos^24x\)
\(\Leftrightarrow sin^42x+cos^42x=cos^44x\)
\(\Leftrightarrow\left(sin^22x+cos^22x\right)^2-2sin^22x.cos^22x=cos^44x\)
\(\Leftrightarrow1-\frac{1}{2}sin^24x=cos^44x\)
\(\Leftrightarrow2-\left(1-cos^24x\right)=2cos^44x\)
\(\Leftrightarrow2cos^44x-cos^24x-1=0\)
\(\Leftrightarrow\left(cos^24x-1\right)\left(2cos^24x+1\right)=0\)
\(\Leftrightarrow cos^24x-1=0\)
\(\Leftrightarrow sin^24x=0\Leftrightarrow sin4x=0\)
\(\Leftrightarrow2sin2x.cos2x=0\Leftrightarrow sin2x=0\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
1.
\(cos2x+5=2\left(2-cosx\right)\left(sinx-cosx\right)\)
\(\Leftrightarrow2cos^2x+4=4sinx-4cosx-2sinx.cosx+2cos^2x\)
\(\Leftrightarrow2sinx.cosx-4\left(sinx-cosx\right)+4=0\)
Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=1-t^2\end{matrix}\right.\)
Pt trở thành:
\(1-t^2-4t+4=0\)
\(\Leftrightarrow t^2+4t-5=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-5\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)
2.
\(\Leftrightarrow\left(sinx-1\right)^2+1=sin^23x\)
Ta có \(VT\ge1\) trong khi \(VP\le1\) với mọi x
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}sinx-1=0\\sin^23x=1\end{matrix}\right.\) \(\Leftrightarrow x=\frac{\pi}{2}+k2\pi\)
3.
\(\Leftrightarrow-2cos2x.sinx-2sin2x=2\sqrt{2}\)
\(\Leftrightarrow cos2x.sinx+sin2x=-\sqrt{2}\)
Ta có:
\(VT^2=\left(cos2x.sinx+sin2x.1\right)^2\le\left(cos^22x+sin^22x\right)\left(sin^2x+1\right)\le1\left(1+1\right)=2\)
\(\Rightarrow VT\ge-\sqrt{2}\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}sinx=1\\cos2x=sinx.sin2x\end{matrix}\right.\) (ko tồn tại x thỏa mãn)
Vậy pt vô nghiệm
Giải pt: \(\sin3x+\cos3x-2\sqrt{2}\cos\left(x+\dfrac{\pi}{4}\right)+1=0\)
\(\Leftrightarrow3\sin x-4\sin^3x+4\cos^3x-3\cos x-2\cos x+2\sin x+1=0\)\(\Leftrightarrow4\left[\left(\cos x-\sin x\right)^3+3\cos x.\sin x\left(\cos x-\sin x\right)\right]-5\left(\cos x-\sin x\right)+1=0\)\(\Leftrightarrow4\left[\left(\cos x-\sin x\right)^3+3\dfrac{\left(\cos x-\sin x\right)^2-1}{2}\left(\cos x-\sin x\right)\right]-5\left(\cos x-\sin x\right)+1=0\)Đặt cosx-sinx=a. Thay vào giải pt ta tìm được: a=1
<=> cosx-sinx=1
\(\Leftrightarrow\cos x.\sin\dfrac{\pi}{4}-\sin x.\cos\dfrac{\pi}{4}=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\sin\left(\dfrac{\pi}{4}-x\right)=\sin\dfrac{\pi}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\pi}{4}-x=\dfrac{\pi}{4}-2k\pi\Rightarrow x=2k\pi\\\dfrac{\pi}{4}-x=\pi-\dfrac{\pi}{4}-2k\pi\Rightarrow x=-\dfrac{\pi}{2}+2k\pi\end{matrix}\right.\)
Giải phương trình: \(\left(\frac{\cos4x+\sin2x}{\cos3x+\sin3x}\right)^2=2\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)+3\)
ĐKXĐ:...
Biến đổi đoạn trong ngoặc trước cho đỡ rối:
\(cos4x+sin2x=cos\left(3x+x\right)+sin\left(3x-x\right)\)
\(=cos3x.cosx-sin3x.sinx+sin3x.cosx-cos3x.sinx\)
\(=cosx\left(cos3x+sin3x\right)-sinx\left(cos3x+sin3x\right)\)
\(=\left(cosx-sinx\right)\left(cos3x+sin3x\right)\)
Thay vào phương trình:
\(\left(cosx-sinx\right)^2=2\left(sinx+cosx\right)+3\)
\(\Leftrightarrow1-2sinx.cosx=2\left(sinx+cosx\right)+3\)
Đặt \(sinx+cosx=a\Rightarrow-2sinx.cosx=1-a^2\)
\(2-a^2=2a+3\Rightarrow a=-1\Rightarrow sinx+cosx=-1\Rightarrow...\)
\(\dfrac{\sqrt{2}\left(sinx-cox\right)^2\left(1+2sin2x\right)}{sin3x+sin5x}=1-tanx\)
\(sin\left(2x-\dfrac{\pi}{4}\right)cos2x-2\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=0\)
(sin2x+cos2x)cosx+2cos2x -sinx=0
sinx + cosxsin2x + \(\sqrt{3}cos3x=2\left(cos4x+sin^3x\right)\)
\(\sqrt{3}cos5x-2sin3xcos2x-sinx=0\)