Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyên Walker (Walker Of...
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 13:00

a: \(P=\left(\dfrac{3x+6}{2\left(x^2+4\right)}-\dfrac{2x^2-x-10}{\left(x+1\right)\left(x^2+1\right)}\right):\left(\dfrac{10\left(x^2-1\right)+3\left(x^2+1\right)\left(x-1\right)-6\left(x+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\cdot2}\right)\cdot\dfrac{2}{x-1}\)

\(=\left(\dfrac{\left(3x+6\right)\left(x^3+x^2+x+1\right)-\left(2x^2+8\right)\left(2x^2-x-10\right)}{2\left(x^2+4\right)\left(x+1\right)\left(x^2+1\right)}\right)\cdot\dfrac{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)\cdot2}{-3x^3+x^2-3x-13}\cdot\dfrac{2}{x-1}\)

\(=\dfrac{-x^4+11x^3+13x^2+17x+16}{\left(x^2+4\right)}\cdot\dfrac{2}{-3x^3+x^2-3x-13}\)

Đinh Thị Nhật Ánh
Xem chi tiết
Huy Nguyễn Đức
9 tháng 4 2017 lúc 14:57

(2x+9)/(x+1)(x+8)-(2x+15)/(x+8)(x+7)+(2x+10)/(x+7)(x+3)=4/3

(x+1+x+8)/(x+1)(x+8)-(x+8+x+7)/(x+8)(x+7)+(x+7+x+3)/(x+7)(x+3)=4/3

1/(x+8)+1/(x+1)-1/(x+7)-1/(x+8)+1/(x+7)+1/(x+3)=4/3

1/(x+1)+1/(x+3)=4/3

(x+3+x+1)/(x+3)(x+1)=4/3

(2x+4)/(x+3)(x+1)=4/3

=>(2x+4).3=(x+3)(x+1).4

6(x+2)=4(x+3)(x+1)

3(x+2)=2(x+3)(x+1)

3x+6=2(x^2+4x+3)

3x+6=2x^2+8x+6

2x^2+8x+6-3x-6=0

2x^2+5x=0

x(2x+5)=0

=> x=0 hoac 2x+5=0

=> x=0 hoac x=-5/2 

^($_DUY_$)^
Xem chi tiết
Toru
11 tháng 12 2023 lúc 21:04

\(4(x-3)^2-(2x-1)(2x+1)=10\\\Rightarrow4(x^2-6x+9)-(4x^2-1)=10\\\Rightarrow4x^2-24x+36-4x^2+1=10\\\Rightarrow-24x+37=10\\\Rightarrow-24x=-27\\\Rightarrow x=\dfrac98\)

Nezuko Kamado
Xem chi tiết
Nezuko Kamado
30 tháng 10 2021 lúc 19:29

Mn ơi giúp mk với , cảm ơn nhiều !!

Nguyễn Hà Giang
30 tháng 10 2021 lúc 20:00

1) (x−1):0,16=−9:(1−x)

\(\Rightarrow\)(x-1):0,16= 9:(-1):(x-1)

\(\Rightarrow\)(x-1):0,16=9:(x-1)

\(\Rightarrow\)(x-1).(x-1)= 9. 0,16

\(\Rightarrow\)(x-1)\(^2\)= 1,44=1,2\(^2\)=(-1,2)\(^2\)

\(\Rightarrow\)x-1=1,2\(\Rightarrow\)x=2,2

hoặc x-1= -1,2\(\Rightarrow\)x= -0,2

Vậy x =2,2 ; x=0,2

...............................

 

Hikaru Akira
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 22:33

a: ta có: \(\dfrac{\left(x+2\right)^2}{2}+\dfrac{\left(2x+1\right)^2}{4}+\dfrac{\left(2x-1\right)^2}{8}-\left(x+1\right)^2=0\)

\(\Leftrightarrow4\left(x^2+4x+4\right)+2\left(4x^2+4x+1\right)+4x^2-4x+1-8\left(x+1\right)^2=0\)

\(\Leftrightarrow4x^2+16x+16+8x^2+8x+2+4x^2-4x+1-8\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow16x^2+20x+19-8x^2-16x-8=0\)

\(\Leftrightarrow8x^2+4x+11=0\)

\(\text{Δ}=4^2-4\cdot8\cdot11=-336< 0\)

Vì Δ<0 nên phương trình vô nghiệm

Akai Haruma
13 tháng 9 2021 lúc 8:54

b.

PT \(\Leftrightarrow \frac{x^2+2x+1}{2}-\frac{4x^2-4x+1}{3}+\frac{4x^2+4x+1}{4}-\frac{x^2-10x+25}{6}=0\)

\(\Leftrightarrow \left(\frac{x^2+2x+1}{2}+\frac{4x^2+4x+1}{4}\right)-\left(\frac{4x^2-4x+1}{3}+\frac{x^2-10x+25}{6}\right)=0\)

\(\Leftrightarrow \frac{6x^2+8x+3}{4}-\frac{9x^2-18x+27}{6}=0\)

\(\Leftrightarrow \frac{3(6x^2+8x+3)-2(9x^2-18x+27)}{12}=0\)

$\Leftrightarrow 5x-\frac{15}{4}=0$

$\Leftrightarrow x=\frac{3}{4}$

 

Akai Haruma
13 tháng 9 2021 lúc 8:56

c.

PT $\Leftrightarrow (x^3+9x^2+27x+27)-(3x^3+12x^2)+(x^3+6x^2+12x+8)=(-x^3+3x^2-3x+1)-8$

$\Leftrightarrow 42x+42=0$

$\Leftrightarrow x=-1$

Hà Gia Huy Vū
Xem chi tiết
Hà Gia Huy Vū
20 tháng 12 2020 lúc 11:00

giúp mik với

 

 

 

Thuỳ Lê Minh
Xem chi tiết
YangSu
11 tháng 1 2023 lúc 19:41

\(8,1-\left(x-6\right)=4\left(2-2x\right)\)

\(\Leftrightarrow1-x+6=8-8x\)

\(\Leftrightarrow-x+8x=8-1-6\)

\(\Leftrightarrow7x=1\)

\(\Leftrightarrow x=\dfrac{1}{7}\)

\(9,\left(3x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)

\(10,\left(x+3\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)

 

2611
11 tháng 1 2023 lúc 19:47

`8)1-(x-5)=4(2-2x)`

`<=>1-x+5=8-6x`

`<=>5x=2<=>x=2/5`

`9)(3x-2)(x+5)=0`

`<=>[(x=2/3),(x=-5):}`

`10)(x+3)(x^2+2)=0`

  Mà `x^2+2 > 0 AA x`

 `=>x+3=0`

`<=>x=-3`

`11)(5x-1)(x^2-9)=0`

`<=>(5x-1)(x-3)(x+3)=0`

`<=>[(x=1/5),(x=3),(x=-3):}`

`12)x(x-3)+3(x-3)=0`

`<=>(x-3)(x+3)=0`

`<=>[(x=3),(x=-3):}`

`13)x(x-5)-4x+20=0`

`<=>x(x-5)-4(x-5)=0`

`<=>(x-5)(x-4)=0`

`<=>[(x=5),(x=4):}`

`14)x^2+4x-5=0`

`<=>x^2+5x-x-5=0`

`<=>(x+5)(x-1)=0`

`<=>[(x=-5),(x=1):}`

Hquynh
11 tháng 1 2023 lúc 19:48

\(11,=>\left[{}\begin{matrix}5x-1=0\\x^2-9=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\\x=-3\end{matrix}\right.\\ 12,=>\left(x+3\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ 13,=>x\left(x-5\right)-4\left(x-5\right)=0\\ =>\left(x-4\right)\left(x-5\right)=0\\ =>\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

\(14,=>x^2+5x-x-5=0\\ =>x\left(x+5\right)-\left(x+5\right)=0\\ =>\left(x-1\right)\left(x+5\right)=0\\ =>\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

it south nice
Xem chi tiết
lê thị thu huyền
27 tháng 7 2017 lúc 21:21

a) \(\left(2x-1\right)^6=\left(2x-1\right)^8\)

\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)

\(\Leftrightarrow\left(2x-1\right)^6\left[1-\left(2x-1\right)^2\right]=0\)

\(\Rightarrow\hept{\begin{cases}\left(2x-1\right)^6=0\\2x-1=1\\2x-1=-1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=1\\x=0\end{cases}}\)

phần b chuyển vế, đạt nhân tử chung....... làm tương tự phần a

Bùi Minh Anh
27 tháng 7 2017 lúc 21:30

a, Ta có :

\(\left(2x-1\right)^6=\left(2x-1\right)^8\) \(=\left(2x-1\right)^8-\left(2x-1\right)^6\) \(=\left(2x-1\right)^6\left[\left(2x-1\right)^2-1\right]\) = 0

\(\Rightarrow\orbr{\begin{cases}\left(2x-1\right)^2-1=0\\\left(2x-1\right)^6=0\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}\left(2x-1\right)^2=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}}\\2x=1\end{cases}}}\)=> \(2x-1=0\) hoặc \(2x-1=-1\) hoặc \(2x-1=1\)

=> \(x=\frac{1}{2};x=0\) hoặc \(x=1\)

Vậy \(x=\frac{1}{2};x=0\) hoặc x = 1

Ngọc Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 9 2023 lúc 18:50

loading...  loading...  

Nguyễn thành Đạt
8 tháng 9 2023 lúc 19:22

Bạn xem lại đề nhé.

a) \(A=x^2+5y^2+2xy-4x-8y+2015\)

 

\(A=x^2-4x+4-2y\left(x-2\right)+y^2+2011+4y^2\)

\(A=\left(x-2\right)^2-2y\left(x-2\right)+y^2+2011+4y^2\)

\(A=\left(x-2-y\right)^2+4y^2+2011\)

Vì \(\left(x-y-2\right)^2\ge0;4y^2\ge0\)

\(\Rightarrow A_{min}=2011\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}x-y-2=0\\4y^2=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Nguyễn thành Đạt
8 tháng 9 2023 lúc 19:27

b) \(B=\left(x-2012\right)^2+\left(x+2013\right)^2\)

\(B=x^2-4024x+2012^2+x^2+4026x+2013^2\)

\(B=2x^2+2x+2012^2+2013^2\)

\(B=2\left(x^2+x+\dfrac{1}{4}\right)+2012^2+2013^2-\dfrac{1}{2}\)

\(B=2\left(x+\dfrac{1}{2}\right)^2+2012^2+2013^2-\dfrac{1}{2}\)

\(\Rightarrow B_{min}=2012^2+2013^2-\dfrac{1}{2}\)

Dấu bằng xảy ra : \(\Leftrightarrow x=-\dfrac{1}{2}\)