Rút gọn rồi tính giá trị biểu thức
Q=x(x^2+y)-x^2(x+y)+y(x^4+x)
tại x=2, y=1/2
rút gọn rồi tính giá trị biểu thức
A = ( x - y )2 + ( x + y )2 - x( 2x + 1 ) tại x = 2 ; y = - 3
B = ( x + 3 )2 + ( x + 3 )( x - 3 ) - ( x + 2 )( 2x - 8 ) tại x = -1/2
a: \(A=x^2-2xy+y^2+x^2+2xy+y^2-2x^2-x\)
=-x
=-2
Thực hiện phép nhân, rút gọn rồi tính giá trị của biểu thức:
a) x(x - y) + y(x + y) tại x= -6 ; y= 8.
b) x(x^2 - y) - x^2 (x + y) + y (x^2 - x) tại x= 1/2 và y = -100.
a: \(=x^2-xy+xy+y^2=x^2+y^2=100\)
b \(=x^3-xy-x^3-x^2y+x^2y-xy=-2xy=-2\cdot\dfrac{1}{2}\cdot\left(-100\right)=-1\cdot\left(-100\right)=100\)
a)` x(x - y) + y(x + y) `
`=x^2-xy+xy+y^2`
`=x^2+y^2`(1)
thay x= -6 ; y= 8 vào 1 ta đc
\(\left(-6\right)^2+8^2=36+64=100\)
b)`) x(x^2 - y) - x^2 (x + y) + y (x^2 - x) `
`=x^3-xy-x^3-xy+yx^2-xy`
`=\(-3xy+yx^2\)(2)
thay `x= 1/2 và y = -100` ta đc
\(-\dfrac{3.1}{2}.\left(-100\right)+\dfrac{\left(-100\right).1}{2}=150-50=100\)
B1 rút gọn rồi tính giá trị cảu biểu thức
a) A = ( 2x - 1 ) \(^2\)+ (3 - 2x ) ( 2x + 3 ) tại x = \(\dfrac{1}{4}\)
b) x(x\(^2\)+ y ) - ( x + 2y ) ( x\(^2\)- 2xy + 4y\(^2\)) tại x= 32 , y= -2
a) \(A=4x^2-4x+1+9-4x^2=-4x+10\)
\(=-4.\dfrac{1}{4}+10=9\)
b) \(B=x^3+xy-x^3-8y^3=y\left(x-8y^2\right)\)
\(=\left(-2\right).\left(32-32\right)=0\)
a: Ta có: \(A=\left(2x-1\right)^2+\left(3-2x\right)\left(3+2x\right)\)
\(=4x^2-4x+1+9-4x^2\)
\(=-4x+10\)
\(=-4\cdot\dfrac{1}{4}+10=-1+10=9\)
Rút gọn rồi tính giá trị của biểu thức
a)M=(x^2+3xy-3x^3)+(2y^3-xy+3x^3)-y^3 tại x=5 và y=4
b) N= x^2(x+y)-y(x^2-y^2) tại x=-6 y=8
c)P=x^2+1/2x+1/16 biết x= 3/4
a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)
= x² + 3xy - 3x³ + 2y³ - xy + 3x³
= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³
= x² + 2xy + 2y³
Tại x = 5 và y = 4
M = 5² + 2.5.4 + 2.4³
= 25 + 40 + 2.64
= 65 + 128
= 193
b) N = x²(x + y) - y(x² - y²)
= x³ + x²y - x²y + y³
= x³ + (x²y - x²y) + y³
= x³ + y³
Tại x = -6 và y = 8
N = (-6)³ + 8³
= -216 + 512
= 296
c) P = x² + 1/2 x + 1/16
= (x + 1/2)²
Tại x = 3/4 ta có:
P = (3/4 + 1/2)² = (5/4)² = 25/16
Rút gọn rồi tính giá trị của biểu thức:(x-y)(x^2+xy+y^2)-2y^3 tại x=1/2 và y=2/3
rút gọn rồi tính giá trị biểu thức
a, I = x (y^2 - xy^2) + y (x^2y - yx = x) tại x = 3 và y =1/3
b, K = x^2 ( y^2 +xy^2 +1) - ( x^3 +x^2 +1 ) y^2 tại x = 0,5 và y = -1/2
tìm x bt
a, 2 ( 5x - 8 ) - 3 ( 4x - 5 ) = 4 ( 3x - 4 ) + 11
b, 2x ( 6x - 2x^2 ) + 3x^2 ( x - 4) = 8
Bài 2:
a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
hay \(x=\dfrac{2}{7}\)
b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Bài 1:
a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)
\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)
\(=xy\)
=1
b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)
\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)
\(=x^2-y^2\)
\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)
rút gọn rồi tính giá trị biểu thức
A=x.(x+y)-y.(x+y) với x=-1/2;y=--2
A = x ( x + y ) - y ( x + y )
A = ( x + y ) ( x - y )
A = x\(^2\) - y\(^2\)
Tại x = \(\dfrac{-1}{2}\) và y = -2 ta có
\(\left(\dfrac{-1}{2}\right)^2-\left(-2\right)^2\) \(=\) \(\dfrac{-15}{4}\)
\(A=x\left(x+y\right)-y\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)\)
\(=x^2-y^2\)
Thay \(x=-\dfrac{1}{2}\) và \(y=-2\) vào biểu thức \(A\), ta có:
\(A=\left(-\dfrac{1}{2}\right)^2-\left(-2\right)^2\)
\(=\dfrac{1}{4}-4\)
\(=-\dfrac{15}{4}\)
Thực hiện phép nhân, rút gọn rồi tính giá trị biểu thức A = x(x^2-y) - x^2(x+y) + y(x^2+x) tại x= -80 y=-340
\(A=x^3-xy-x^3-x^2y+x^2y+xy\)
\(A=0\)
A=x^3-xy-x^3-x^2y+x^2y+xy
A=0
rút gọn rồi tính giá trị biểu thức
B=x^2.(x+y)-y.(x^2-y)+2014 với x=1;y=-1
B=x2(x+y)-y(x2-y)+2014
= x3+x2y-x2y+y2+2014
= x3+y2+2014
= 13+(-1)2+2014
= 1+1+2014
=2016
B = x2.x+x2.y-y.x2+y.y+2014 Uy tín:)
= x3+x2y-x2y+y2+2014
= x3+y2+2014
Thay x=1;y=-1. Ta có:
B = 13+(-1)2+2014
= 1+1+2014
= 2016
Ta có: \(B=x^2\left(x+y\right)-y\left(x^2-y\right)+2014\)
\(=x^3+x^2y-x^2y-y^2+2014\)
\(=x^3-y^2+2014\)
\(=1-1+2014\)
=2014