tìm tập xác định
a) y = cos\(\dfrac{x-1}{x^2-1}\)
b) y = \(sin\sqrt{x}\)
\(y=\dfrac{\sin x-1}{2\cos-\sqrt{3}}\)
tìm tập xác định
Hàm số xác định khi: \(2cosx-\sqrt{3}\ne0\Leftrightarrow cosx\ne\dfrac{\sqrt{3}}{2}\Leftrightarrow x\ne\pm\dfrac{\pi}{6}+k2\pi\).
Tìm tập xác định của y=f(x)=\(\dfrac{\sin\left(3x\right)}{\tan^2\left(x\right)-1}+\sqrt{\dfrac{2-\cos\left(x\right)}{1+\cos\left(x\right)}}\)
Hàm số xác định khi: \(\left\{{}\begin{matrix}tanx\ne\pm1;cosx\ne0\\cosx\ne-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm\dfrac{\pi}{4}+k\pi\\x\ne\dfrac{\pi}{2}+k\pi\\x\ne\pi+k2\pi\end{matrix}\right.\)
Tìm tập xác định của các hàm số sau:
a) \(y = \frac{{1 - \cos x}}{{\sin x}}\);
b) \(y = \sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} .\)
a) Biểu thức \(\frac{{1 - \cos x}}{{\sin x}}\) có nghĩa khi \(\sin x \ne 0\), tức là \(x \ne k\pi \;\left( {k\; \in \;\mathbb{Z}} \right)\).
Vậy tập xác định của hàm số đã cho là \(\mathbb{R}/{\rm{\{ }}k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}\} \;\)
b) Biểu thức \(\sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \) có nghĩa khi \(\left\{ {\begin{array}{*{20}{c}}{\frac{{1 + \cos x}}{{2 - \cos x}} \ge 0}\\{2 - \cos x \ne 0}\end{array}} \right.\)
Vì \( - 1 \le \cos x \le 1 ,\forall x \in \mathbb{R}\)
Vậy tập xác định của hàm số là \(D = \mathbb{R}\)
Tìm m để hàm số \(y=\sqrt{\dfrac{m-\sin x-\cos x-2\sin x\cos x}{\sin^{2017}x-\cos^{2019}x+\sqrt{2}}}\) xác định với mọi \(x\in[-\dfrac{\pi}{2};\dfrac{\pi}{2}]\)
Tìm tập xác định của các hàm số :
a) \(y=\sqrt{\cos x+1}\)
b) \(y=\dfrac{3}{\sin^2x-\cos^2x}\)
c) \(y=\dfrac{2}{\cos x-\cos3x}\)
d) \(y=\tan x+\cot x\)
vì sao cosx - cos3x = -2sin2xsin(-x) = 4sin\(^2\)xcosx
tìm tập xác định của hàm số lượng giác sau
a)\(y=\dfrac{tan\left(2x-\dfrac{\pi}{4}\right)}{\sqrt{1-sin\left(x-\dfrac{\pi}{8}\right)}}\)
b)\(y=\dfrac{tan\left(x-\dfrac{\pi}{4}\right)}{1-cos\left(x+\dfrac{\pi}{3}\right)}\)
c)\(y=\dfrac{3}{cosx-cos3x}\)
d)\(y=\dfrac{4}{sin^2x-cos^2x}\)
e)\(y=\dfrac{1+cot\left(\dfrac{\pi}{3}+x\right)}{tan^2\left(3x-\dfrac{\pi}{4}\right)}\)
Tìm tập hợp xác định của các hàm số :
a) \(y=\dfrac{1+\cos x}{\sin x}\)
b) \(y=\sqrt{\dfrac{1+\cos x}{1-\cos x}}\)
c) \(y=\tan\left(x-\dfrac{\pi}{3}\right)\)
d) \(y=\cot\left(x+\dfrac{\pi}{6}\right)\)
Bài 2. a) Hàm số đã cho không xác định khi và chỉ khi sinx = 0. Từ đồ thị của hàm số y = sinx suy ra các giá trị này của x là x = kπ. Vậy hàm số đã cho có tập xác định là R {kπ, (k ∈ Z)}.
b) Vì -1 ≤ cosx ≤ 1, ∀x nên hàm số đã cho không xác định khi và chỉ khi cosx = 1. Từ đồ thị của hàm số y = cosx suy ra các giá trị này của x là x = k2π. Vậy hàm số đã cho có tập xác định là R {k2π, (k ∈ Z)}.
c) Hàm số đã cho không xác định khi và chỉ khi .
Hàm số đã cho có tập xác định là R {}.
d) Hàm số đã cho không xác định khi và chỉ khi
Hàm số đã cho có tập xác định là R {}.
tìm tập xác định của hàm số sau đây:
a)\(y=sin^{x-1}_{x+2}\)
b)\(y=\sqrt{3-2cosx}\)
c)\(y=\sqrt{\dfrac{1+cosx}{1-cosx}}\)
ĐKXĐ:
a. Không hiểu đề bài là gì
b. \(3-2cosx\ge0\)
\(\Leftrightarrow cosx\le\dfrac{3}{2}\) (luôn đúng)
Vậy \(D=R\)
c. \(\left\{{}\begin{matrix}\dfrac{1+cosx}{1-cosx}\ge0\left(luôn-đúng\right)\\1-cosx\ne0\end{matrix}\right.\)
\(\Leftrightarrow cosx\ne1\Leftrightarrow x\ne k2\pi\)
tìm tập xác định\(y=\dfrac{1}{\left(\cos\dfrac{x}{2}-3\right)\left(\tan x-\sqrt{3}\right)}\)
\(y=\sqrt{1+\cot^22x}\)
a, Hàm số xác định khi: \(\left\{{}\begin{matrix}cos\dfrac{x}{2}\ne3\\tanx\ne\sqrt{3}\\cosx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{3}+k\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
b, Hàm số xác định khi: \(sin2x\ne0\Leftrightarrow2x\ne k\pi\Leftrightarrow x\ne\dfrac{k\pi}{2}\)