4x-3/x-5+29/3
2x-1/5-3x=2
Giải các phương trình sau:
a) x - 5(x - 2) = 6x
b) 23 + 3x2 - 32x = 48
c) (3x + 1)(x - 3)2 = (3x + 1)(2x - 5)2
d) 9x2 - 1 = (3x + 1)(4x + 1)
\(a,x-5\left(x-2\right)=6x\\ \Leftrightarrow x-5x+10-6x=0\\ \Leftrightarrow-10x+10=0\\ \Leftrightarrow x=1\\ b,2^3+3x^2-32x=48\\ \Leftrightarrow3x^2-32x+8=48\\ \Leftrightarrow3x^2-32x-40=0\)
Nghiệm xấu lắm bn
\(c,\left(3x+1\right)\left(x-3\right)^2=\left(3x+1\right)\left(2x-5\right)^2\\ \Leftrightarrow c,\left(3x+1\right)\left[\left(2x-5\right)^2-\left(x-3\right)^2\right]\\ \Leftrightarrow\left(3x+1\right)\left(2x-5-x+3\right)\left(2x-5+x-3\right)=0\\ \Leftrightarrow\left(3x+1\right)\left(x-2\right)\left(3x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=2\\x=\dfrac{8}{3}\end{matrix}\right.\)
\(d,9x^2-1=\left(3x+1\right)\left(4x+1\right)\\ \Leftrightarrow\left(3x+1\right)\left(4x+1\right)-\left(3x-1\right)\left(3x+1\right)=0\\ \Leftrightarrow\left(3x+1\right)\left(4x+1-3x+1\right)=0\\ \Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-2\end{matrix}\right.\)
\(b,2x^3+3x^2-32x-48=0\\ \Leftrightarrow\left(2x^3-8x^2\right)+\left(11x^2-44x\right)+\left(12x-48\right)=0\\ \Leftrightarrow2x^2\left(x-4\right)+11x\left(x-4\right)+12\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(2x^2+11x+12\right)=0\\ \Leftrightarrow\left(x-4\right)\left[\left(2x^2+8x\right)+\left(3x+12\right)\right]=0\\ \Leftrightarrow\left(x-4\right)\left[2x\left(x+4\right)+3\left(x+4\right)\right]=0\\ \Leftrightarrow\left(x-4\right)\left(2x+3\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{3}{2}\\x=-4\end{matrix}\right.\)
tìm x:
a)(2x-3)+(3x^2+1)-6x*(x^2-x+1)+3x^2-2x=10
b)(3x+1)*(x-2)-x*((3x-5)=-8-5x
c)(4x-3)*(16x^2+12+9)-32x^2*(2x-1)-32x^2+x=20
a: \(\left(2x-3\right)\left(3x^2+1\right)-6x\left(x^2-x+1\right)+3x^2-2x=10\)
\(\Leftrightarrow6x^3+2x-9x^2-3-6x^3+6x^2-6x+3x^2-2x=10\)
\(\Leftrightarrow-6x-3=10\)
=>-6x=13
hay x=-13/6
b: \(\Leftrightarrow3x^2-3x+x-2-3x^2+5x=-8-5x\)
=>3x-2=-5x-8
=>8x=-6
hay x=-3/4
c: \(\Leftrightarrow64x^3-27-64x^3+32x^2-32x^2+x=20\)
=>x-27=20
hay x=47
Giải pt
1, 9x^2-1 =(3x+1)(4x+1)
2, 2x^3+3x^2-32x=48
3, (2x+5)^2-(x+2)^2=0
4, 2x^3+6x^2=x^2+3x
a) \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\)\(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(-x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
Vậy...
Bài 1: Thực hiện phép tính:
a) \(32x^5\left(3y-7\right)^5:[-4x\left(7-3y\right)^4]\)
b) \(\dfrac{12x^3\left(3x-5\right)^2}{4x\left(3x-5\right)^2}-\dfrac{2x\left(x+7\right)^4}{\left(x+7\right)^3}\)
a)\(\dfrac{32x^5\left(3y-7\right)^5}{-4x\left(7-3y\right)^4}=\dfrac{-4x.\left(-8x^4\right)\left(3y-7\right)^4\left(3y-7\right)}{-4x\left(3y-7\right)^4}\)
\(=\dfrac{\left(-8x^4\right)\left(3y-7\right)}{1}=\left(-8x^4\right)\left(3y-7\right)\)
\(=-32x^4y+56x^4\)
b) \(\dfrac{12x^3\left(3x-5\right)^2}{4x\left(3x-5\right)^2}-\dfrac{2x\left(x+7\right)}{\left(x+7\right)^3}=\dfrac{12x^3}{4x}-\dfrac{2x}{\left(x+7\right)^2}\)
\(=3x^2-\dfrac{2x}{\left(x+7\right)^2}\)
\(\)
a/4x-3/x-5=29/3
b/2x-1/5-3x=2
c/4x-5/x-1=2+ x/x-1
d/7/x+2=3/x-5
e/2x+5/2x-x/x+5=0
\(a.DKXD:x\ne5\\ \frac{4x-3}{x-5}=\frac{29}{3}\\ \Leftrightarrow3\left(4x-3\right)=29\left(x-5\right)\\ \Leftrightarrow12x-9=29x-145\\ \Leftrightarrow12x-29x=9-145\\ \Leftrightarrow-17x=-136\\ \Leftrightarrow x=8\)
Vậy nghiệm của phương trình trên là \(8\)
\(b.DKXD:x\ne\frac{5}{3}\\ \frac{2x-1}{5-3x}=2\\ \Leftrightarrow2x-1=2\left(5-3x\right)\\ \Leftrightarrow2x-1=10-6x\\ \Leftrightarrow2x+6x=1+10\\ \Leftrightarrow8x=11\\ \Leftrightarrow x=\frac{11}{8}\)
Vậy nghiệm của phương trình trên là \(\frac{11}{8}\)
\(c.DKXD:x\ne1\\ \frac{4x-5}{x-1}=2+\frac{x}{x-1}\\ \Leftrightarrow\frac{4x-5}{x-1}=\frac{2\left(x-1\right)+x}{x-1}\\ \Leftrightarrow4x-5=2x-2+x\\ \Leftrightarrow4x-2x-x=5-2\\ \Leftrightarrow x=3\left(tmdk\right)\)
Vậy nghiệm của phương trình trên là \(3\)
\(d.DKXD:x\ne5;-2\\ \frac{7}{x+2}=\frac{3}{x-5}\\ \Leftrightarrow7\left(x-5\right)=3\left(x+2\right)\\ \Leftrightarrow7x-35=3x+6\\ \Leftrightarrow7x-3x=35+6\\ \Leftrightarrow4x=41\\ \Leftrightarrow x=\frac{41}{4}\)
Vậy nghiệm của phương trình trên là \(\frac{41}{4}\)
\(e.DKXD:x\ne0;-5\\\Leftrightarrow \frac{2x+5}{2x}-\frac{x}{x+5}=0\\\Leftrightarrow \frac{2x+5}{2x}=\frac{x}{x+5}\\ \Leftrightarrow\left(x+5\right)\left(2x+5\right)=2x.x\\\Leftrightarrow 2x^2+5x+10x+25=2x^2\\ \Leftrightarrow2x^2-2x^2+15x=-25\\ \Leftrightarrow15x=-25\\\Leftrightarrow x=-\frac{5}{3}\)
Vậy nghiệm của phương trình trên là \(-\frac{5}{3}\)
Giải các phương trình sau: (TM ĐK)
1) \(\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)
2) \(\dfrac{2x-1}{5-3x}=2\)
3) \(\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
4) \(\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
mng giúp mk bài này vs. Cảm ơn bạn nhiều
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\left(ĐKXĐ:x\ne5\right)\)
\(\Rightarrow3\left(4x-3\right)=29\left(x-5\right)\)
\(\Leftrightarrow12x-9=29x-145\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x+136=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\left(tm\right)\)
Vậy \(S=\left\{8\right\}\)
\(2,\dfrac{2x-1}{5-3x}=2\left(ĐKXĐ:x\ne\dfrac{5}{3}\right)\)
\(\Rightarrow2x-1=2\left(5-3x\right)\)
\(\Leftrightarrow2x-1=10-6x\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x-11=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{11}{8}\right\}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2x-2}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{3x-2}{x-1}\)
\(\Rightarrow4x-5=3x-2\)
\(\Leftrightarrow4x-5-3x+2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{3\right\}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne-5\right)\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2+15x+25}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{15x+25}{2x\left(x+5\right)}=0\)
\(\Rightarrow15x+25=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=\dfrac{-5}{3}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{-5}{3}\right\}\)
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-29\left(x-5\right)}{3\left(x-5\right)}=0\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\)
\(2,\dfrac{2x-1}{5-3x}=2\)
\(\Leftrightarrow\dfrac{2x-1-2\left(5-3x\right)}{5-3x}=0\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5-2\left(x-1-x\right)}{x-1}=0\)
\(\Leftrightarrow4x-5-2x+2+2x=0\)
\(\Leftrightarrow4x=3\)
\(\Leftrightarrow x=\dfrac{3}{4}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)-2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow2x^2+10x+5x+25-2x^2=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=-\dfrac{5}{3}\)
Tìm x:
a, 2x3 - 32x = 0
b, ( 3x - 2 )2 - (x + 5 )2 = 0
c, 2( x+3 ) - x2 - 3x = 0
d, 4x2 - 25 - ( 2x + 5 )( x + 7) = 0
xin lỗi mọi người mk nhấn nhầm toán lớp 8 nha
a) \(2x^3-32x=0\)
\(2x\left(x^2-16\right)=0\)
\(2x\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow2x=0\)hoặc \(\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
vậy \(x=0\) hoặc \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
b) \(\left(3x-2\right)^2-\left(x+5\right)^2=0\)
\(\left(3x-2-x-5\right)\left(3x-2+x+5\right)=0\)
\(\left(2x-7\right)\left(4x+3\right)=0\)
\(\orbr{\begin{cases}2x-7=0\\4x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-3}{4}\end{cases}}\)
vậy \(\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-3}{4}\end{cases}}\)
c) \(2\left(x+3\right)-x^2-3x=0\)
\(2\left(x+3\right)-\left(x^2+3x\right)=0\)
\(2\left(x+3\right)-x\left(x+3\right)=0\)
\(\left(2-x\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2-x=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
vậy \(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
d) \(4x^2-25-\left(2x+5\right)\left(x+7\right)=0\)
\(\left(4x^2-25\right)-\left(2x+5\right)\left(x+7\right)=0\)
\(\left(2x-5\right)\left(2x+5\right)-\left(2x+5\right)\left(x+7\right)=0\)
\(\left(2x+5\right)\left(2x-5-x-7\right)=0\)
\(\left(2x+5\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+5=0\\x-12=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-5}{2}\\x=12\end{cases}}\)
vậy \(\orbr{\begin{cases}x=\frac{-5}{2}\\x=12\end{cases}}\)
cho đơn thức: P(x)= 2+5x-3x+4x-32x-5
câu này dễ đúng không????
a) 4sqrt(2x + 1) - sqrt(8x + 4) + 1/2 * sqrt(32x + 16) = 12 b) sqrt(4x ^ 2 - 4x + 1) = 5 . c) (2sqrt(x) - 3)/(sqrt(x) - 1) = - 1/2
a) \(4\sqrt{2x+1}-\sqrt{8x+4}+\dfrac{1}{2}\sqrt{32x+16}=12\) (ĐK: \(x\ge-\dfrac{1}{2}\))
\(\Leftrightarrow4\sqrt{2x+1}-\sqrt{4\left(2x+1\right)}+\dfrac{1}{2}\cdot4\sqrt{2x+1}=12\)
\(\Leftrightarrow4\sqrt{2x+1}-2\sqrt{2x+1}+2\sqrt{2x+1}=12\)
\(\Leftrightarrow4\sqrt{2x+1}=12\)
\(\Leftrightarrow\sqrt{2x+1}=\dfrac{12}{4}\)
\(\Leftrightarrow2x+1=3^2\)
\(\Leftrightarrow2x=9-1\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=\dfrac{8}{2}\)
\(\Leftrightarrow x=4\left(tm\right)\)
b) \(\sqrt{4x^2-4x+1}=5\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\)
\(\Leftrightarrow\left|2x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=5\left(x\ge\dfrac{1}{2}\right)\\2x-1=-5\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{2}\\x=-\dfrac{4}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
c) \(\dfrac{2\sqrt{x}-3}{\sqrt{x}-1}=-\dfrac{1}{2}\)(ĐK: \(x\ge0;x\ne1\))
\(\Leftrightarrow-\left(\sqrt{x}-1\right)=2\left(2\sqrt{x}-3\right)\)
\(\Leftrightarrow-\sqrt{x}+1=4\sqrt{x}-6\)
\(\Leftrightarrow4\sqrt{x}+\sqrt{x}=1+6\)
\(\Leftrightarrow5\sqrt{x}=7\)
\(\Leftrightarrow\sqrt{x}=\dfrac{7}{5}\)
\(\Leftrightarrow x=\dfrac{49}{25}\left(tm\right)\)