\(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{6561}\)
Mong giúp đỡ ạ!!!!
Viết chương trình tính tổng A = \(\dfrac{1}{1}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{n}\)
__________________________
Rất mong mọi người giúp đỡ mình ạ T-T
Program HOC24;
var a: real;
i,n: integer;
begin
write('Nhap n='); readln(n);
a:=0;
for i:=1 to n do a:=a+1/i;
write('A= ',a);
readln
end.
\(a\dfrac{-2}{3}.\dfrac{4}{5}+\dfrac{1}{5}:\dfrac{9}{11}b\left(-6,2:3,7\right):0,2\)
MONG MỌI NGƯỜI, ANH CHỊ, THẦY CÔ GIÚP ĐỠ
Giải:
a) -2/3.4/5+2/5:9/11
=-8/15+22/45
=-2/45
b) (-6,2:3,7):0,2
=-62/37:0,2
=-310/37
Chúc bạn học tốt!
a)-2/3.4/5+1/5:9/11
=-8/15+11/45
=-13/45
ok nhé!
Giúp em với ạ!!!
Thực hiện các phép tính:
a/ \(\dfrac{2}{3}\)+\(\dfrac{1}{5}\).\(\dfrac{10}{7}\)\(\)
b/ \(\dfrac{7}{12}\)-\(\dfrac{27}{7}\)\(\).\(\dfrac{1}{8}\)
c/ \(\dfrac{5}{9}\).\(\dfrac{7}{13}\)\(\)+\(\dfrac{5}{9}\).\(\dfrac{9}{13}\)-\(\dfrac{3}{13}\).\(\dfrac{5}{9}\)
Em cần ngay ạ!!!
\(\dfrac{2}{3}+\dfrac{1}{5}.\dfrac{10}{7}=\dfrac{2}{3}+\dfrac{10}{35}=\dfrac{70}{105}+\dfrac{30}{105}=\dfrac{100}{105}=\dfrac{50}{21}\)
a) Ta có: \(\dfrac{2}{3}+\dfrac{1}{5}\cdot\dfrac{10}{7}\)
\(=\dfrac{2}{3}+\dfrac{2}{7}\)
\(=\dfrac{14}{21}+\dfrac{6}{21}\)
\(=\dfrac{20}{21}\)
\(\dfrac{7}{12}-\dfrac{27}{7}.\dfrac{1}{8}=\dfrac{7}{12}-\dfrac{27}{56}=\dfrac{392}{672}-\dfrac{324}{672}=\dfrac{68}{672}=\dfrac{17}{168}\)
*Mong các bạn giúp mình ạ^^*
(\(\dfrac{1}{2}\)-0,75).(0,2-\(\dfrac{2}{5}\)) / \(\dfrac{5}{9}\) - (\(1\dfrac{1}{2}\))
=(1/2-3/4)*(1/5-2/5):5/9-3/2
=-1/4*(-1/5)*9/5-3/2
=1/20*9/5-3/2
=9/100-3/2=9/100-150/100=-141/100
(\(\dfrac{x+2}{x\sqrt{x}-1}\)+\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)+\(\dfrac{1}{1-\sqrt{x}}\)) : \(\dfrac{\sqrt{x}-1}{2}\)
a) Rút gọn A
b)Tìm x để biểu thức A đạt GTLN.
------------------------------------------
Mong mng giúp đỡ ạ!
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$
a.
\(A=\left[\frac{x+2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}+\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(x+\sqrt{x}+1)}\right].\frac{2}{\sqrt{x}-1}\)
\(=\frac{x+2+x-\sqrt{x}-(x+\sqrt{x}+1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}.\frac{2}{\sqrt{x}-1}\)
\(=\frac{2(x-2\sqrt{x}+1)}{(\sqrt{x}-1)^2(x+\sqrt{x}+1)}=\frac{2(\sqrt{x}-1)^2}{(\sqrt{x}-1)^2(x+\sqrt{x}+1)}=\frac{2}{x+\sqrt{x}+1}\)
b.
Ta thấy với $x\geq 0 ; x\neq 1$ thì $x+\sqrt{x}+1\geq 1$
$\Rightarrow A=\frac{2}{x+\sqrt{x}+1}\leq 2$
Vậy $A$ đạt max bằng $2$ khi $x=0$
Tính giá trị biểu thức
A=\(\dfrac{1}{2.5}\)+\(\dfrac{1}{5.8}\)+\(\dfrac{1}{8.11}\)+.....+\(\dfrac{1}{92.95}\)+\(\dfrac{1}{95.98}\)
Mong mn giúp đỡ
\(\dfrac{2}{36a^2b^2-1};\dfrac{1}{6ab+1^2};\dfrac{1}{6ab-1^2}\)
\(\dfrac{x}{x^3-27};\dfrac{2x}{x^2-6x+9};\dfrac{1}{x^2+3x+9x}\)
\(\dfrac{x^2-x}{x^2-1};\dfrac{3x}{x^3+2x^2+x};2x\)
giúp với ạ
\(\dfrac{2}{36a^2b^2-1}=\dfrac{2}{\left(6ab-1\right)\left(6ab+1\right)}\\ \dfrac{1}{6ab+1}=\dfrac{6ab-1}{\left(6ab-1\right)\left(6ab+1\right)};\dfrac{1}{6ab-1}=\dfrac{6ab+1}{\left(6ab-1\right)\left(6ab+1\right)}\)
\(\dfrac{x}{x^3-27}=\dfrac{x\left(x-3\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\\ \dfrac{2x}{x^2-6x+9}=\dfrac{2x\left(x^2+3x+9\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\\ \dfrac{1}{x^2+3x+9}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(\dfrac{x^2-x}{x^2-1}=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x}{x+1}=\dfrac{x\left(x+1\right)}{\left(x+1\right)^2}\\ \dfrac{3x}{x^3+2x^2+x}=\dfrac{3x}{x\left(x^2+2x+1\right)}=\dfrac{3}{\left(x+1\right)^2}\\ 2x=\dfrac{2x\left(x+1\right)^2}{\left(x+1\right)^2}\)
S = \(81\) + \(27\) + \(9\) + \(3\) ... + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\)
Tính S giúp mik với ạ, ai nhanh mik tick
\(3S=241+81+27+9+...+\dfrac{1}{9}+\dfrac{1}{27}\)
\(2S=3S-S=241-\dfrac{1}{81}=\dfrac{241x81-1}{81}\)
\(\Rightarrow S=\dfrac{241x81-1}{2x81}\)
Giải phương trình \(\dfrac{x+1}{39}+\dfrac{x+2}{38}+\dfrac{x+3}{37}=0\)
Mong mọi ng giúp đỡ
\(\dfrac{x+1}{39}+\dfrac{x+2}{38}+\dfrac{x+3}{37}=0\)
\(\Leftrightarrow\dfrac{x+1}{39}+1+\dfrac{x+2}{38}+1+\dfrac{x+3}{37}+1-3=0\)
\(\Leftrightarrow\dfrac{x+40}{39}+\dfrac{x+40}{38}+\dfrac{x+40}{37}=3\)
\(\Leftrightarrow\left(x+40\right)\left(\dfrac{1}{39}+\dfrac{1}{38}+\dfrac{1}{37}\right)=3\)
\(\Leftrightarrow\left(x+40\right).\dfrac{4331}{54834}=3\)
\(\Leftrightarrow x+40=\dfrac{164502}{4331}\)
\(\Leftrightarrow x=\dfrac{-8738}{4331}\)
-Vậy \(S=\left\{\dfrac{-8738}{4331}\right\}\)