Chứng minh đẳng thức:
(x^2+y^2)^2-4x^2y^2=(x+y)^2(x-y)^2
Làm hộ mình với. Thanks
chứng minh đẳng thức
\(\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{x^4+4x^2y^2+y^4-4}{x^2+y+xy+x}:\frac{1}{2x^2+y+2}=\frac{x+1}{2y-x}\)
Chứng minh đẳng thức (x-y)^2-4(x-y)(x+2y)+4(x+2y)^2
Cái bạn viết chưa phải đẳng thức. Bạn xem lại đề.
Chứng minh đẳng thức : |
( x^2 + y^2 )2 – 4x^2 y^2 = ( x + y ) ^2 ( x – y )^2 |
\(VT=\left(x^2+y^2\right)^2-4x^2y^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)=\left(x-y\right)^2\left(x+y\right)^2=VP\)
Chứng minh các đẳng thức sau
a) (x+y)2 - y2 = x*(x+2y)
b) (x2+y2) - 4x2y2 = (x+y)2 * (x-y)2
\(a,\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)\)
\(b,\left(x^2+y^2\right)-4x^2y^2=\left(x^2+y^2-2xy\right)\left(x^2+y^2+2xy\right)=\left(x-y\right)^2\left(x+y\right)^2\)
Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html
Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html
chứng minh đẳng thức (x-y)^3+4y(2x^2+y^2)=(x+y)^3+2y(x^2+y^2)
Ta có: \(\left(x-y\right)^3+4y\left(2x^2+y^2\right)\)
\(=x^3-3x^2y+3xy^2-y^3+8x^2y+4y^3\)
\(=x^3+5x^2y+3xy^2+3y^3\)
\(=x^3+3x^2y+3xy^2+y^3+2x^2y+2y^3\)
\(=\left(x+y\right)^3+2y\left(x^2+y^2\right)\)
Chứng minh bất đẳng thức
d) 5( x + 2y )2 - ( 3y + 2x )2 + ( 4x - y )2 +3( 2y + x)(x - 2y) = 20x2
5( x + 2y )2 - ( 3y + 2x )2 + ( 4x - y )2 +3( 2y + x)(x - 2y)
= 5x2 + 20xy + 20y2 - 9y2 - 12xy - 4x2 + 16x2 - 8xy + y2 + 3x2 - 12y2
= 20x2
=> ĐPCM
d) 5( x + 2y )2 - ( 3y + 2x )2 + ( 4x - y )2 +3( 2y + x)(x - 2y) = 20x2
Ta có:
d) 5( x + 2y )2 - ( 3y + 2x )2 + ( 4x - y )2 +3( 2y + x)(x - 2y)
=5.[x2+2.x.2y+(2y)2 ] - [(3y)2+2.3y.2x+(2x)2 ] + [(4x)2 - 2.4x.y+y2 ] + 3.[x2 - (2y)2 ]
=5x2 + 20xy +20y2 - 9y2 - 12xy - 4x2 + 16x2 - 8xy + y2+3x2 - 12y2
=20x2(đpcm)
5( x + 2y )2 - ( 3y + 2x )2 + ( 4x - y )2 + 3( 2y + x )( x - 2y )
= 5( x2 + 4xy + 4y2 ) - ( 9y2 + 12xy + 4x2 ) + ( 16x2 - 8xy + y2 ) + 3( x2 - 4y2 )
= 5x2 + 20xy + 20y2 - 9y2 - 12xy - 4x2 + 16x2 - 8xy + y2 + 3x2 - 12y2
= 20x2 = VP ( đpcm )
chứng minh các đẳng thức sau (x-y)^3 +4y(2x^2+y^2)=(x+y)^3+2y(x^2+y^2)
\(\left(x-y\right)^3+4y\left(2x^2+y^2\right)=\left(x+y\right)^3+2y\left(x^2+y^2\right)\)
\(\Leftrightarrow x^3-3x^2y+3xy^2-y^3+8x^2y+4y^3=x^3+3x^2y+3xy^2+y^3+2x^2y+2y^3\)
\(\Leftrightarrow\left(-3x^2y+8x^2y\right)+3xy^2+3y^3=\left(3x^2y+2x^2y\right)+3xy^2+3y^2\)
\(\Leftrightarrow5x^2y+3xy^2+3y^2=5x^2y+3xy^2+3y^2\)
1.Tính:
\(x:\frac{x-1}{2}-\frac{\left(x-1\right)\left(x^2+4x+1\right)}{2x^2+2x}.\frac{-4x}{\left(x-1\right)^2}-\frac{4x^2}{x^2-1}\)
2.Chứng minh đẳng thức sau( giả sử đẳng thức có nghĩa):
\(\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}+\frac{x-y}{\left(z-x\right)\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
Các bạn giúp mình với!
chứng minh rằng các hằng đẳng thức sau thỏa mãn với mọi x, y :
a, x^2 + xy + y^2 + 1 > 0
b, x^2 + 5y^2 + 2x - 4xy -10y+ 14 >0
c, 5x^2+10y^2 - 6xy -4x -2y +3 >0