\(VT=\left(x^2+y^2\right)^2-4x^2y^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)=\left(x-y\right)^2\left(x+y\right)^2=VP\)
\(VT=\left(x^2+y^2\right)^2-4x^2y^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)=\left(x-y\right)^2\left(x+y\right)^2=VP\)
Chứng minh các hằng đẳng thức sau: \(x^4+y^4+\left(x+y\right)^4=2\left(x^2+xy+y^2\right)^2\)
Cho x, y, z, t là các số nguyên dương thỏa mãn đẳng thức: \(x^2+z^2=y^2+t^2.\)Chứng minh rằng: x + y + z + t là hợp số
Chứng minh các đẳng thức sau:
a) (x+y).(x+z)= x2+ (y+z).x+y.z
b) (x-y).(x2+x.y+y2)= x3-y3
THANKS!!!!!!!!!!!!
Chứng minh các đẳng thức sau:
a) (x+y).(x+z)= x2+ (y+z).x+y.z
b) (x-y).(x2+x.y+y2)= x3-y3
THANKS!!!!!!!!!!!!
Chứng minh các đẳng thức
\(a,\frac{x^2y-xy}{x-1}=xy\)với x khác 0
\(b,\frac{x^2-y^2}{x^2+xy^2}=\frac{x-y}{x}\)với x khác -y, x khác 0
Chứng minh đẳng thức : 3y(x+1)-6x-6 / 3y-6 = 2(y+3)+2xy+6 / 2y+6 (y khác 2 , -3 )
Chứng minh rằng không tồn tại 2 số hữu tỉ x,y trái dấu k đối nhau thỏa mãn đẳng thức 1/x+y= 1/x+1/y
1.chứng minh với mọi x,y,z thỉ : x^2+y^2+z^2+3>=2.(x+y+z)
2.chứng minh bất đẳng thức sau đúng với moi số dương a,b:
1/a+1/b>=4/(a+b)
chứng minh rằng ko tồn tại 2 số hữu tỉ x và y trái dấu không đối nhau để thỏa mãn đẳng thức 1/x-y=1/x+1/y