Cho ΔABC vuông tại A có AB = 5cm ; BC =13cm.
b) Vẽ hai phân giác BE , CF cắt nhau tại I . Tính AE ,EC ,AF ,BF và số đo BIC
c)Kẻ IH vuông góc với AB,IK vuông góc với AC.Chứng tỏ rằng AHIK là hình vuông
làm đầy đủ và chi tiết giúp e vs plzzzzz
\(b,AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\left(pytago\right)\)
Vì BE là p/g nên \(\dfrac{AE}{EC}=\dfrac{AB}{BC}=\dfrac{5}{13}\Rightarrow AE=\dfrac{5}{13}EC\)
Mà \(AE+EC=AC=12\Rightarrow\dfrac{18}{13}EC=12\Rightarrow EC=\dfrac{26}{3}\left(cm\right)\)
\(\Rightarrow AE=\dfrac{10}{3}\left(cm\right)\)
Vì CF là p/g nên \(\dfrac{AF}{FB}=\dfrac{AC}{BC}=\dfrac{12}{13}\Rightarrow AF=\dfrac{12}{13}FB\)
Mà \(AF+FB=AB=5\Rightarrow\dfrac{25}{13}FB=5\Rightarrow FB=\dfrac{13}{5}\left(cm\right)\)
\(\Rightarrow AF=\dfrac{12}{5}\left(cm\right)\)
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13}\approx\sin67^0\Rightarrow\widehat{B}\approx67^0\\ \Rightarrow\widehat{C}=90^0-67^0=23^0\)
Vì BE,CF là p/g nên \(\left\{{}\begin{matrix}\widehat{ICB}=\dfrac{1}{2}\widehat{ACB}=11,5^0\\\widehat{IBC}=\dfrac{1}{2}\widehat{ABC}=33,5^0\end{matrix}\right.\)
\(\Rightarrow\widehat{BIC}=180^0-\widehat{ICB}-\widehat{IBC}=135^0\)
\(c,\widehat{AKI}=\widehat{AHI}=\widehat{KAH}=90^0\) nên AHIK là hcn
Mà AI là p/g \(\widehat{KAH}\)(I là giao 3 đường p/g tam giác ABC)
Nên AHIK là hình vuông
Mn giúp e với ạ
Cho hình thoi abcd có độ dài hai đường chéo là 14cm và 22cm. Tính độ dài cạnh của hình thoi
Mn vẽ hình ra luôn giúp e, e cảm ơn ạ
Hình bạn vẽ hai đường chéo và chúng cắt nhau tại trung điểm của mỗi đường và vuông góc nhé.
Ta có: ABCD là hình thoi => \(AC\perp BD\)
\(AC\cap BD=\left\{O\right\}\)
Xét △AOB có:
\(AB^2=AO^2+OB^2\left(Pytago\right)\)
\(\Rightarrow AB^2=7^2+11^2\)
\(\Rightarrow AB=\sqrt{7^2+11^2}\approx13\left(cm\right)\)
Giải đầy đủ giúp mình với ạ vẽ hình lời giải chi tiết ạ mình cần gấp lắm
bài 1. Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm và AH là đường cao
a/ Gọi E,F lần lượt là hình chiếu của H trên AC, AB, CMR: AF XAB=AE X AC; AH mủ 3= BF x CE x BC
b/ tính EF
c/ Gọi AD là phân giác góc BAC, D thuộc BC. Tính DB, DC
a: Xét ΔABH vuông tại H có HF là đường cao ứng với cạnh huyền AB
nên \(AF\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)
Mn ơi giúp mik vs mik cần hình và loi giai đầy đủ ạ.Mình cảm ơn <3
Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của BC
a: góc AEH=1/2*180=90 độ
=>HE vuông góc AB
góc AFH=1/2*180=90 độ
=>HF vuông góc AC
Vì góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
b: AEHF làhình chữ nhật
=>góc AFE=góc AHE=góc B
=>góc B+góc FCB=180 độ
=>BEFC nội tiếp
mn giúp e với ạ
Cho tứ giác ABCD có hai dường chéo vuông góc. Gọi M, N, P, Q lần lượt là trung điểm AB, BC, CD, DA. Tứ giác MNPQ là hình gì? Vì sao?
Mn vẽ cả hình giúp e, e cảm ơn
\(\left\{{}\begin{matrix}AM=MB\\BN=NC\end{matrix}\right.\Rightarrow MN\text{ là đtb tg }ABC\Rightarrow MN\text{//}AC;MN=\dfrac{1}{2}AC\\ \left\{{}\begin{matrix}CP=PD\\DQ=QA\end{matrix}\right.\Rightarrow PQ\text{ là đtb tg }ACD\Rightarrow PQ\text{//}AC;PQ=\dfrac{1}{2}AC\\ \Rightarrow MN\text{//}PQ;MN=PQ\\ \Rightarrow MNPQ\text{ là hbh}\\ \left\{{}\begin{matrix}AM=MB\\CP=PD\end{matrix}\right.\Rightarrow MP\text{ là đtb tg }ABD\Rightarrow MP\text{//}BD\\ \text{Mà }AC\perp BD;MN\text{//}AC\\ \Rightarrow MP\perp MN\\ \text{Vậy }MNPQ\text{ là hcn}\)
GIẢI GIÚP MÌNH CÂU D THÔI Ạ.GẤP LẮM Ạ
cho đường tròn (o) bán kinh ab, m thuộc đường tròn. vẽ n đối xứng a qua m; bn cắt đường tròn tại c. gọi e là giao điểm của ac và bm; f là điểm đổi xứng với e qua m.
a) chứng minh n e ⊥ a b
b)cm: FA vuông góc với AB
c)cm:BM.BF=BF^2 -FE^2
d) cho dây AM=r. hãy tính độ dài các cạnh tam giác ABF theo R
Xét tamgiac amb vuông tại M
AB mũ hai = am mũ hai +mb mũ hai
(2R)mũ hai =r mũ hai +mb mũ hai
mb mũ hai = cân bằng r mũ hai - r mũ hai
Suy ra : mb=R\(\sqrt{3}\)
CÁC BẠN VẼ HÌNH GIÚP MÌNH VỚI ( ĐẦY ĐỦ KÍ HIỆU VÀ KO CẦN ÀM BÀI ĐÂU ) ĐỀ Ạ: Cho tam giác ABC cân tại A. Trên tia đối BA lấy điểm D, trên tia đối CA lấy điểm E sao cho BD=CE Vẽ DH và EK cùng vuông góc với đg thẳng BC. Chứng minh: a) HB=CK b) góc AHB= góc AKC c) HK // DE d) tam giác AHE= tam giác AKD e) Gọi I là giao điểm của DK và EH . Chứng minh AI vuông góc với DE
giải, trình bày rõ ràng đầy đủ và vẽ hình giúp mình với ạ mình cảm ơn
Bài 1:
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:
\(AF\cdot AB=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)
Ai còn online giải giúp mình bài này với
Cho ΔABC vuông tại A có AB=AC. Vẽ đường thẳng d đi qua A và không cắt cạnh BC. Vẽ BM và CN cùng vuông góc với d.
a) Chứng minh: ΔABM=ΔCAN
b) Chứng minh: MN=BM+CN
c) Chứng minh: góc ABC= góc ACB= 45o
Tam giác NAC vuông tại N có:
NAC + NCA = 900
NAC = 900 - NCA
Ta có:
MAB + BAC + CAN = MAN
MAB + 900 + 900 - NCA = 1800
MAB = 1800 - 900 - 900 + NCA
MAB = NCA
Xét tam giác MAB vuông tại M và tam giác NCA vuông tại N có:
AB = AC (gt)
MAB = NCA (chứng minh trên)
=> Tam giác MAB = Tam giác NCA (cạnh huyền - góc nhọn)
=> MA = NC (2 cạnh tương ứng)
AN = BM (2 cạnh tương ứng)
=> MA + AN = NC + BM
hay MN = NC + BM
Tam giác ABC vuông tại A
mà AB = AC (gt)
=> Tam giác ABC vuông cân tại A
=> ABC = ACB = 450