Cho pt: x²-4x-(m²+3m)=0 tìm m để pt có 2 nghiệm phân biệt
x2 – 4x + 3m – 1= 0 (1)
⦁ Tìm m để PT (1) có 2 nghiệm phân biệt
⦁ Tìm m để PT(1) có nghiệm
giúp mình vs mn
Để pt (1) có 2 nghiệm phân biệt
\(\Delta'=4-\left(3m-1\right)=5-3m>0\Leftrightarrow m< \dfrac{5}{3}\)
Để pt (1) có nghiệm
\(\Delta'=5-3m\ge0\Leftrightarrow m\le\dfrac{5}{3}\)
Cho pt bậc 2 x^2+5x+3m=0 (m là tham số) A) thay m=0 rồi giải pt đã cho B) tìm m để pt x^2+5x+3m=0 có 2 nghiệm phân biệt
a) Với m=0
=> pt <=> \(x^2+5x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
b) \(x^2+5x+3m=0\)
\(\Delta=25-12m\)
Để phương trình có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow25-12m>0\)
\(\Leftrightarrow m< \dfrac{25}{12}\)
cho pt :\(x^2-2x-m^2+2m=0\)
tìm m để pt có 2 nghiệm phân biệt thỏa mãn \(x_1^2+2x_2=3m\)
Xét \(\Delta'=1-\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\)\(\ge0;\forall m\)
=>Pt luôn có hai nghiệm
Theo viet có: \(x_1+x_2=2\)
Do \(x_1^2\) là một nghiệm của pt \(\Rightarrow x_1^2-2x_1-m^2+2m=0\)\(\Leftrightarrow x_1^2=2x_1+m^2-2m\)
\(x_1^2+2x_2=3m\)
\(\Leftrightarrow2x_1+2x_2+m^2-2m=3m\)
\(\Leftrightarrow2\left(x_1+x_2\right)+m^2-5m=0\)
\(\Leftrightarrow4+m^2-5m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=1\end{matrix}\right.\)
Vậy...
Cho pt: \(x^3+\left(m+1\right)x^2+2\left(m-2\right)x-3m+2=0\)
a) Tìm m để pt có 3 nghiệm phân biệt
b) Tìm m để pt có 3 nghiệm phân biệt <2
Cho pt: x2 + (3m + 2)x + 3m + 1 = 0
Tìm tất cả giá trị của m để pt có 2 nghiệm phân biệt nhỏ hơn 2
Xét phương trình đã cho có dạng: $ax^2+bx+c=0$ với \(\left\{{}\begin{matrix}a=1\ne0\\b=3m+2\\c=3m+1\end{matrix}\right.\)
suy ra phương trình đã cho là phương trình bậc hai một ẩn $x$
Có $Δ=b^2-4ac=(3m+2)^2-4.(3m+1).1=9m^2=(3m)^2 \geq 0$ với mọi $m$ nên phương trình có 2 nghiệm phân biệt $⇔m \neq 0$
nên phương trình đã cho có 2 nghiệm $x_1;x_2$ với
$x_1=\dfrac{-b-\sqrt[]{ Δ}}{2a}=\dfrac{-(3m+2)-3m}{2}=-3m-1$
$x_2=\dfrac{-b+\sqrt[]{Δ}}{2a}=\dfrac{-(3m+2)+3m}{2}=-1$
Nên phương trình có 2 nghiệm nhỏ hơn 2 $⇔-3m-1<2⇔m>-1$
Vậy $m>-1;m \neq 0$ thỏa mãn đề
Ta có: \(\text{Δ}=\left(3m+2\right)^2-4\cdot1\cdot\left(3m+1\right)\)
\(=9m^2+12m+4-12m-4\)
\(=9m^2\ge0\forall m\)
Do đó: Phương trình luôn có 2 nghiệm
Để phương trình có hai nghiệm phân biệt thì \(9m^2\ne0\)
hay \(m\ne0\)
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3m-2}{1}=-3m-2\\x_1\cdot x_2=\dfrac{3m+1}{1}=3m+1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1< 2\\x_2< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m+1-2\left(-3m-2\right)+4>0\\-3m-2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m+1+6m+4+4>0\\-3m< 6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9m>-9\\m< -2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m< -2\end{matrix}\right.\Leftrightarrow-3< m< -2\)
Kết hợp ĐKXĐ, ta được: -3<m<-2
Vậy: -3<m<-2
cho f(x)=-x^2+4x+3m-1 . xác định m để pt f(x)=0 có 2 nghiệm phân biệt (1;dương vô cùng )
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 1 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 2 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 3 nghiệm phân biệt
ĐKXĐ: \(x\ge0\)
\(\left(x^2-x-m\right)\sqrt{x}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)
Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm
Do đó:
a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm
\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)
b. Để pt có 2 nghiệm pb
TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0
\(\Leftrightarrow m=0\)
TH2: (1) có 2 nghiệm trái dấu
\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)
\(\Rightarrow m\ge0\)
c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)
cho pt \(x^2-4x+m-3=0\). tìm giá trị của m để pt có 2 nghiệm phân biệt tm \(2x_1^2-4x_1+x_2^2+m-13=0\)
2x1^2-x1(x1+x2)+x2^2+m-13=0
=>>x1^2+x2^2-x1x2+m-13=0
=>4^2-2(m-3)-(m-3)+m-13=0
=>-3(m-3)+m-13+16=0
=>-3m+9+m+3=0
=>-2m+12=0
=>m=6
3.3. Cho pt: x ^ 2 - 4x + m = 0 (1). a) Tìm điều kiện của m để pt (1) có hai nghiệm phân biệt . b) Giải pt (1) với m = 3 .
Lời giải:
a. Để pt có 2 nghiệm phân biệt thì: $\Delta'=(-2)^2-m>0$
$\Leftrightarrow 4-m>0$
$\Leftrightarrow m< 4$
b. Với $m=3$ thì pt trở thành: $x^2-4x+3=0$
$\Leftrightarrow (x-1)(x-3)=0$
$\Leftrightarrow x-1=0$ hoặc $x-3=0$
$\Leftrightarrow x=1$ hoặc $x=3$