a,b,c>9, a+b+c=3
chứng minh \(\sqrt{a\left(5-b\right)}+\sqrt{b\left(5-c\right)}+\sqrt{c\left(5-a\right)}\le6\)
Cho a, b, c > 0 có a + b + c = 3. Chứng minh: \(\sqrt{a\left(b+c+2\right)}+\sqrt{b\left(c+a+2\right)}+\sqrt{c\left(a+b+2\right)}\le6\)
\(a+b+c=3\\ \Leftrightarrow a\left(b+c+2\right)=ab+ac+a+b+c+1=\left(a+1\right)\left(b+c+1\right)\)
Tương tự:
\(b\left(c+a+2\right)=\left(b+1\right)\left(a+c+1\right)\\ c\left(a+b+2\right)=\left(c+1\right)\left(a+b+1\right)\)
Áp dụng BĐT cosi:
\(\left\{{}\begin{matrix}\left(a+1\right)\left(b+c+1\right)\le\dfrac{\left(a+1+b+c+1\right)^2}{2}=\dfrac{2^2}{2}=2\\\left(b+1\right)\left(a+c+1\right)\le\dfrac{\left(b+1+a+c+1\right)^2}{2}=\dfrac{2^2}{2}=2\\\left(c+1\right)\left(a+b+1\right)\le\dfrac{\left(c+1+a+b+1\right)^2}{2}=\dfrac{2^2}{2}=2\end{matrix}\right.\)
Cộng vế theo vế 2 BĐT trên:
\(\Leftrightarrow\sqrt{a\left(b+c+2\right)}+\sqrt{b\left(c+a+2\right)}+\sqrt{c\left(a+b+2\right)}\le2+2+2=6\)
Dấu \("="\Leftrightarrow a=b=c=1\)
Áp dụng BĐT Bunhiacopski:
\(VT^2=\left(\sqrt{a\left(b+c+2\right)}+\sqrt{b\left(a+c+2\right)}+\sqrt{c\left(a+b+2\right)}\right)^2\\ \le\left(a+b+c\right)\left(b+c+2+a+c+2+a+b+2\right)\\ =3\cdot\left(2\cdot3+6\right)=36\\ \Leftrightarrow VT\le\sqrt{36}=6\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{b+c+2}}{\sqrt{a}}=\dfrac{\sqrt{a+c+2}}{\sqrt{b}}=\dfrac{\sqrt{a+b+2}}{\sqrt{c}}\\a+b+c=3\end{matrix}\right.\)
\(\Leftrightarrow a=b=c=1\)
Cho \(a+b+c=3\).
CM
a)\(\sqrt[5]{2a+b}+\sqrt[5]{2b+c}+\sqrt[5]{2c+a}\le3\sqrt[5]{3}\)
b)\(\sqrt[5]{a\left(a+c\right)\left(2a+b\right)}+\sqrt[5]{b\left(b+a\right)\left(2b+c\right)}+\sqrt[5]{c\left(c+b\right)\left(2c+a\right)}\le3\sqrt[5]{6}\)
a/ \(\sqrt[5]{2a+b}+\sqrt[5]{2b+c}+\sqrt[5]{2c+a}\)
\(=\frac{1}{\sqrt[5]{3^4}}\left(\sqrt[5]{3^4}.\sqrt[5]{2a+b}+\sqrt[5]{3^4}.\sqrt[5]{2b+c}+\sqrt[5]{3^4}.\sqrt[5]{2c+a}\right)\)
\(\le\frac{1}{\sqrt[5]{3^4}}\left(\frac{3+3+3+3+2a+b}{5}+\frac{3+3+3+3+2b+c}{5}+\frac{3+3+3+3+2c+a}{5}\right)\)
\(=\frac{1}{\sqrt[5]{3^4}}\left(\frac{36}{5}+\frac{3\left(a+b+c\right)}{5}\right)\)
\(=\frac{1}{\sqrt[5]{3^4}}.9=3\sqrt[5]{3}\)
b/ \(\sqrt[5]{a\left(a+c\right)\left(2a+b\right)}+\sqrt[5]{b\left(b+a\right)\left(2b+c\right)}+\sqrt[5]{c\left(c+b\right)\left(2c+a\right)}\)
\(\frac{1}{\sqrt[5]{6^4}}.\left(\sqrt[5]{6^2}.\sqrt[5]{6.a.3.\left(a+c\right).2.\left(2a+b\right)}+\sqrt[5]{6^2}.\sqrt[5]{6.b.3.\left(b+a\right).2.\left(2b+c\right)}+\sqrt[5]{6^2}.\sqrt[5]{6.c.3.\left(c+b\right).2.\left(2c+a\right)}\right)\)
\(\le\frac{1}{\sqrt[5]{6^4}}.\left(\frac{6+6+6a+3\left(a+c\right)+2\left(2a+b\right)}{5}+\frac{6+6+6b+3\left(b+a\right)+2\left(2b+c\right)}{5}+\frac{6+6+6c+3\left(c+b\right)+2\left(2c+a\right)}{5}\right)\)
\(=\frac{1}{\sqrt[5]{6^4}}.\left(\frac{36}{5}+\frac{18\left(a+b+c\right)}{5}\right)\)
\(=\frac{1}{\sqrt[5]{6^4}}.18=3\sqrt[5]{6}\)
Tính
\(a.\dfrac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)
\(b.\left(3-\sqrt{5}\right).\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right).\sqrt{3-\sqrt{5}}\)
\(c.\dfrac{a-\sqrt{b}}{\sqrt{b}}:\dfrac{\sqrt{b}}{a+\sqrt{b}}\left(b>0;a\ne-\sqrt{b}\right)\)
\(\dfrac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}=\dfrac{9\sqrt{5}+9\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\dfrac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)
b.
\(=\sqrt{3-\sqrt{5}}.\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}+\sqrt{3+\sqrt{5}}.\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)
\(=\sqrt{3-\sqrt{5}}.\sqrt{9-5}+\sqrt{3+\sqrt{5}}.\sqrt{9-5}\)
\(=\sqrt{12-4\sqrt{5}}+\sqrt{12+4\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{10}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{10}+\sqrt{2}\right)^2}\)
\(=\sqrt{10}-\sqrt{2}+\sqrt{10}+\sqrt{2}=2\sqrt{10}\)
c.
\(\dfrac{a-\sqrt{b}}{\sqrt{b}}:\dfrac{\sqrt{b}}{a+\sqrt{b}}=\dfrac{\left(a-\sqrt{b}\right)\left(a+\sqrt{b}\right)}{\sqrt{b}.\sqrt{b}}=\dfrac{a^2-b}{b}\)
cho a,b,c >0 và a+b+c=3
cmr \(\sqrt[5]{\left(2a+b\right)\left(a+c\right)a}+\sqrt[5]{\left(2b+c\right)\left(b+a\right)b}+\sqrt[5]{\left(2c+a\right)\left(c+b\right)c}\) \(\le3\sqrt[5]{6}\)
bn gửi lên cho các bn cùng tham khảo đi! ^-^
Cho \(a,b,c\ge0\) t/m: \(\left\{{}\begin{matrix}c\left(a+b\right)>0\\\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\le6\end{matrix}\right.\)
Tìm Min: \(H=\left(a+b\right)\sqrt{1+\dfrac{3}{a+b^4}}+\sqrt{c^2+\dfrac{3}{c^2}}+\dfrac{\left(b+6\right)^2}{9\left(a+b+c\right)}\)
cho a, b, c là các số dương thỏa mãn ab+bc+ac=5. tính
\(A=a\sqrt{\frac{\left(b^2+5\right)\left(c^2+5\right)}{a^2+5}}+b\sqrt{\frac{\left(a^2+5\right)\left(c^2+5\right)}{b^2+5}}+c\sqrt{\frac{\left(a^2+5\right)\left(b^2+5\right)}{c^2+5}}\)
Lời giải:
Do $ab+bc+ac=5$ nên:
\(a^2+5=a^2+ab+bc+ac=(a+b)(a+c)\)
\(b^2+5=b^2+ab+bc+ac=(b+c)(b+a)\)
\(c^2+5=c^2+ab+bc+ac=(c+a)(c+b)\)
Do đó:
\(A=a\sqrt{\frac{(b+c)(b+a)(c+a)(c+b)}{(a+b)(a+c)}}+b\sqrt{\frac{(a+b)(a+c)(c+a)(c+b)}{(b+c)(b+a)}}+c\sqrt{\frac{(a+b)(a+c)(b+c)(b+a)}{(c+a)(c+b)}}\)
\(=a\sqrt{(b+c)^2}+b\sqrt{(c+a)^2}+c\sqrt{(a+b)^2}=a(b+c)+b(c+a)+c(a+b)\)
\(=2(ab+bc+ac)=2.5=10\)
Cho a,b,c>0 tm a+b+c=5. \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\).
C/m\(\dfrac{\sqrt{a}}{2+a}+\dfrac{\sqrt{b}}{2+b}+\dfrac{\sqrt{c}}{2+c}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
Hai bài giống hệt nhau về cách làm:
cho a,b,c dương thỏa mãn \(a+b+c=5\) và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). CMR: \(\dfrac{\sqrt{a}}{a+2}+\dfrac{\sqrt{b}}{b+2}+\dfrac{\sqrt{c}}{c+2}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
bài 1 rút gọn
a \(A=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
b\(B=\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
c\(C=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\) d\(D=\sqrt{2+\sqrt{3}}+\sqrt{14-5\sqrt{3}}+\sqrt{2}\)
`a)A=(3-sqrt5)sqrt{3+sqrt5}+(3+sqrt5)sqrt{3-sqrt5}`
`=sqrt{3-sqrt5}sqrt{3+sqrt5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=sqrt{9-5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=2(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=sqrt2(sqrt{6+2sqrt5}+sqrt{6-2sqrt5})`
`=sqrt2(sqrt{(sqrt5+1)^2}+sqrt{(sqrt5+1)^2})`
`=sqrt2(sqrt5+1+sqrt5-1)`
`=sqrt{2}.2sqrt5`
`=2sqrt{10}`
`b)B=(5+sqrt{21})(sqrt{14}-sqrt6)sqrt{5-sqrt{21}}`
`=sqrt{5+sqrt{21}}sqrt{5-sqrt{21}}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=sqrt{25-21}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=2sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=2sqrt2sqrt{5+sqrt{21}}(sqrt{7}-sqrt3)`
`=2sqrt{10+2sqrt{21}}(sqrt{7}-sqrt3)`
`=2sqrt{(sqrt3+sqrt7)^2}(sqrt{7}-sqrt3)`
`=2(sqrt3+sqrt7)(sqrt{7}-sqrt3)`
`=2(7-3)`
`=8`
`c)C=sqrt{4+sqrt7}-sqrt{4-sqrt7}`
`=sqrt{(8+2sqrt7)/2}-sqrt{(8-2sqrt7)/2}`
`=sqrt{(sqrt7+1)^2/2}-sqrt{(sqrt7+1)^2/2}`
`=(sqrt7+1)/sqrt2-(sqrt7-1)/2`
`=2/sqrt2=sqrt2`
`d)D=\sqrt{2+sqrt3}+sqrt{14-5sqrt3}+sqrt2`
`=>sqrt2D=sqrt{4+2sqrt3}+sqrt{28-10sqrt3}+2`
`=>sqrt2D=sqrt{(sqrt3+1)^2}+sqrt{(5-sqrt3)^2}+2`
`=>sqrt2D=8`
`=>D=4sqrt2`