Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thơ
Xem chi tiết
Trần Thị Hiền
10 tháng 2 2017 lúc 16:32

Từ \(0\le a\le b+1\le c+2\Rightarrow a+b+1+c+2\le3\left(c+2\right)\)\(\Rightarrow a+b+c+3\le3c+6\)

\(\Rightarrow a+b+c\le3c+3\)

Mà a+b+c=1

\(\Rightarrow1\le3c+3\)

\(\Rightarrow-2\le3c\)

\(\Rightarrow\frac{-2}{3}\le c\)

Để c nhỏ nhất thì c chỉ có thể bằng \(\frac{-2}{3}\)

Nguyễn Như Quỳnh
10 tháng 2 2017 lúc 16:31

pạn vào google là sẽ biết cách làm và đáp án lun

Nguyễn Như Quỳnh
10 tháng 2 2017 lúc 16:34

olm cho mk đi p ơi

KINOMAHA
Xem chi tiết
Kaito Kid
5 tháng 8 2019 lúc 11:39

a2 là a2 hay là a.2

Kim Hue Truong
Xem chi tiết
Ekachido Rika
Xem chi tiết
khanh
Xem chi tiết
Vũ Minh Tuấn
24 tháng 10 2019 lúc 17:57

Ta có: \(a\le b+1\le c+2\)

\(\Rightarrow a+b+1+c+2\le3.\left(c+2\right)\)

\(\Rightarrow a+b+c+3\le3c+6.\)

\(a+b+c=1\)

\(\Rightarrow1+3\le3c+6\)

\(\Rightarrow4\le3c+6\)

\(\Rightarrow-2\le3c\)

\(\Rightarrow-\frac{2}{3}\le c.\)

Hay \(c\ge-\frac{2}{3}\)

Dấu " = " xảy ra khi:

\(c=-\frac{2}{3}.\)

Vậy \(MIN_c=-\frac{2}{3}.\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
Trịnh Long
24 tháng 10 2019 lúc 17:10

Vì:0≤a≤b+1≤c+2 nên 0≤a+b+1+c+2≤c+2+c+2+c+2

=>0≤4≤3c+6(vì a+b+c=1)

Hay 3c≥-2=>c≥-2/3.

Vậy GTNN của c là:-2/3 khi đó a+b=5/3.

Khách vãng lai đã xóa
khanh
24 tháng 10 2019 lúc 17:13

giúp e vs thầy Nguyễn Việt Lâm,Băng Băng 2k6,HISINOMA KINIMADO,...

Khách vãng lai đã xóa
Kaori Miyazono
Xem chi tiết
Nguyễn Tuấn Minh
3 tháng 5 2017 lúc 20:39

Ta có

(a+1)+(b+10)+(c+2014)+(d+2017)\(\le\) 4(d+2017) ( phần này tự lập luận nhé, cũng dễ mà)

=> (a+b+c+d)+(1+10+2014+2017)\(\le\) 4(d+2017)

=> 4042+4042\(\le\) 4(d+2017)

=>8084\(\le\) 4(d+2017)

=> \(2021\le d+2017\)

=> \(4\le d\)

Vậy GTNN của d là 4

Nhok_Lạnh_Lùng
3 tháng 5 2017 lúc 20:05

k cho mình nhé bạn bạn k mình 1 k mình k bạn 3 k nhé

Khởi My
Xem chi tiết
Niii
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2021 lúc 19:25

Nếu có 2 số đồng thời bằng 0 BĐT tương đương \(0\le\dfrac{3}{4}\) hiển nhiên đúng

Nếu ko có 2 số nào đồng thời bằng 0:

\(VT=\dfrac{bc}{a^2+b^2+a^2+c^2}+\dfrac{ca}{a^2+b^2+b^2+c^2}+\dfrac{ab}{a^2+c^2+b^2+c^2}\)

\(VT\le\dfrac{bc}{2\sqrt{\left(a^2+b^2\right)\left(a^2+c^2\right)}}+\dfrac{ca}{2\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}}+\dfrac{ab}{2\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}}\)

\(VT\le\dfrac{1}{4}\left(\dfrac{b^2}{a^2+b^2}+\dfrac{c^2}{a^2+c^2}+\dfrac{a^2}{a^2+b^2}+\dfrac{c^2}{b^2+c^2}+\dfrac{a^2}{a^2+c^2}+\dfrac{b^2}{b^2+c^2}\right)=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c\)

Nguyễn Thế Hiếu
21 tháng 2 2021 lúc 20:51

\(bc\le\dfrac{\left(b+c\right)^2}{4}\Rightarrow\dfrac{bc}{a^2+1}\le\dfrac{\left(b+c\right)^2}{4\left(a^2+1\right)}\) chứng minh tương tự với mấy cái còn lại ta dc           \(\dfrac{bc}{a^2+1}+\dfrac{ac}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{1}{4}\left[\dfrac{\left(b+c\right)^2}{a^2+1}+\dfrac{\left(a+c\right)^2}{b^2+1}+\dfrac{\left(a+b\right)^2}{c^2+1}\right]\) .Thay a^2 +b^2 +c^2 =1 vào vế phải ta dc\(VT\le\dfrac{1}{4}\left[\dfrac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\dfrac{\left(a+b\right)^2}{2c^2+a^2+b^2}\right]\)

áp dụng bunhiacopski dạng phân thức ta dc\(VT\le\dfrac{1}{4}\left[\dfrac{b^2}{a^2+b^2}+\dfrac{c^2}{a^2+c^2}+\dfrac{a^2}{b^2+a^2}+\dfrac{c^2}{b^2+c^2}+\dfrac{a^2}{c^2+a^2}+\dfrac{b^2}{c^2+b^2}\right]\)                           \(VT\le\dfrac{1}{4}\left[\dfrac{a^2+b^2}{a^2+b^2}+\dfrac{c^2+a^2}{c^2+a^2}+\dfrac{c^2+b^2}{c^2+b^2}\right]\) \(\Rightarrow VT\le\dfrac{1}{4}\left(1+1+1\right)=\dfrac{3}{4}\left(đpcm\right)\)

Itachi Uchiha
Xem chi tiết