Ta có: \(a\le b+1\le c+2\)
\(\Rightarrow a+b+1+c+2\le3.\left(c+2\right)\)
\(\Rightarrow a+b+c+3\le3c+6.\)
Mà \(a+b+c=1\)
\(\Rightarrow1+3\le3c+6\)
\(\Rightarrow4\le3c+6\)
\(\Rightarrow-2\le3c\)
\(\Rightarrow-\frac{2}{3}\le c.\)
Hay \(c\ge-\frac{2}{3}\)
Dấu " = " xảy ra khi:
\(c=-\frac{2}{3}.\)
Vậy \(MIN_c=-\frac{2}{3}.\)
Chúc bạn học tốt!
Vì:0≤a≤b+1≤c+2 nên 0≤a+b+1+c+2≤c+2+c+2+c+2
=>0≤4≤3c+6(vì a+b+c=1)
Hay 3c≥-2=>c≥-2/3.
Vậy GTNN của c là:-2/3 khi đó a+b=5/3.