Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Phương Anh
Xem chi tiết
Nguyễn Huy Tú
20 tháng 2 2022 lúc 18:26

\(4x^2+4x+1+4x+2-2x^2-x\le0\)

\(\Leftrightarrow2x^2+7x+3\le0\Leftrightarrow\left(2x+1\right)\left(x+3\right)\le0\)

TH1 : \(\left\{{}\begin{matrix}2x+1\ge0\\x+3\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\le-3\end{matrix}\right.\)<=> -1/2 =< x =< -3 

TH2 : \(\left\{{}\begin{matrix}2x+1\le0\\x+3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le-\dfrac{1}{2}\\x\ge-3\end{matrix}\right.\)( vô lí ) 

Ngô Thành Chung
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2021 lúc 16:23

ĐKXĐ: \(x^2\ge2\)

Đặt \(\sqrt{x^2-2}=a\ge0\)

BPT tương đương: \(\dfrac{1}{\sqrt{a^2+3}}+\dfrac{1}{\sqrt{3a^2+11}}\le\dfrac{2}{a+1}\)

Ta có: \(VT^2\le2\left(\dfrac{1}{a^2+3}+\dfrac{1}{3a^2+11}\right)< 2\left(\dfrac{1}{a^2+3}+\dfrac{1}{3a^2+1}\right)=\dfrac{8\left(a^2+1\right)}{\left(3a^2+1\right)\left(a^2+3\right)}\)

Mặt khác ta có: \(\left(a-1\right)^4\ge0\Leftrightarrow a^4-4a^3+6a^2-4a+1\ge0\)

\(\Leftrightarrow3a^4+10a^2+3\ge2a^4+4a^3+4a^2+4a+2\)

\(\Leftrightarrow\left(3a^2+1\right)\left(a^2+3\right)\ge2\left(a^2+1\right)\left(a+1\right)^2\)

\(\Rightarrow\dfrac{8\left(a^2+1\right)}{\left(3a^2+1\right)\left(a^2+3\right)}\le\dfrac{4}{\left(a+1\right)^2}\)

\(\Rightarrow VT^2< \dfrac{4}{\left(a+1\right)^2}\Rightarrow VT< \dfrac{2}{a+1}\)

\(\Rightarrow\) BPT đã cho đúng với mọi \(a\ge0\) hay nghiệm của BPT là \(x^2\ge2\)

Ngô Thành Chung
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2021 lúc 17:19

ĐKXĐ: \(x>0\)

\(\Leftrightarrow\sqrt{\dfrac{\left(x^2+x+1\right)\left(x^2-x+1\right)}{x\left(x^2+1\right)}}-\sqrt{\dfrac{x^2+x+1}{x^2+1}}+\dfrac{\left(x-1\right)^2}{x}\ge0\)

\(\Leftrightarrow\sqrt{\dfrac{x^2+x+1}{x^2+1}}\left(\sqrt{\dfrac{x^2-x+1}{x}}-1\right)+\dfrac{\left(x-1\right)^2}{x}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-1\right)^2}{\sqrt{x^2-x+1}+\sqrt{x}}.\sqrt{\dfrac{x^2+x+1}{x^2+1}}+\dfrac{\left(x-1\right)^2}{x}\ge0\) (luôn đúng \(\forall x>0\))

Vậy nghiệm của BPT đã cho là \(x>0\)

Đậu Hũ Kho
Xem chi tiết
Kinder
Xem chi tiết
Yeutoanhoc
11 tháng 6 2021 lúc 7:51

`sqrt{x-2}-2>=sqrt{2x-5}-sqrt{x+1}`

`đk:x>=5/2`

`bpt<=>\sqrt{x-2}+\sqrt{x+1}>=\sqrt{2x-5}+2`

`<=>x-2+x+1+2\sqrt{(x-2)(x+1)}>=2x-5+4+4\sqrt{2x-5}`

`<=>2x-1+2\sqrt{(x-2)(x+1)}>=2x-1+4\sqrt{2x-5}`

`<=>2\sqrt{(x-2)(x+1)}>=4\sqrt{2x-5}`

`<=>sqrt{x^2-x-2}>=2sqrt{2x-5}`

`<=>x^2-x-2>=4(2x-5)`

`<=>x^2-x-2>=8x-20`

`<=>x^2-9x+18>=0`

`<=>(x-3)(x-6)>=0`

`<=>` \(\left[ \begin{array}{l}x \ge 6\\x \le 3\end{array} \right.\) 

Kết hợp đkxđ:

`=>` \(\left[ \begin{array}{l}x \ge 6\\\dfrac52 \le x \le 3\end{array} \right.\) 

你混過 vulnerable 他 難...
Xem chi tiết
Hồng Phúc
19 tháng 3 2021 lúc 17:42

1.

ĐKXĐ: \(x=2\)

Xét \(x=2\), bất phương trình vô nghiệm

\(\Rightarrow\) bất phương trình đã cho vô nghiệm

\(\Rightarrow\) Không tồn tại \(a,b\) thỏa mãn

Đề bài lỗi chăng.

Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết