Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Hoàng Cầm
Xem chi tiết
Nhã Doanh
13 tháng 2 2018 lúc 17:30

c.

\(4y^2+1=4y\)

\(\Leftrightarrow4y^2-4y+1=0\)

\(\Leftrightarrow4y^2-2y-2y+1=0\)

\(\Leftrightarrow2y\left(2y-1\right)-\left(2y-1\right)=0\)

\(\Leftrightarrow\left(2y-1\right)^2=0\)

\(\Leftrightarrow y=0\)

d.

\(y^2-2y=80\)

\(\Leftrightarrow y^2-2y-80=0\)

\(\Leftrightarrow y^2-10y+8y-80=0\)

\(\Leftrightarrow y\left(y-10\right)+8\left(y-10\right)=0\)

\(\Leftrightarrow\left(y+8\right)\left(y-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y+8=0\\y-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-8\\y=10\end{matrix}\right.\)

Linh
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 22:09

\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\)  \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)

TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)

Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)

TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)

2 câu dưới hình như em hỏi rồi?

Ngọc Khanh
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
Trần Việt Linh
10 tháng 8 2016 lúc 22:07

Bài 1:

\(A=x^2y-y+xy^2-x=\left(x^2y+xy^2\right)-\left(x+y\right)\\ =xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

Voqis x=-1;y=3 ta có:

\(A=\left(-1+3\right)\left(-1\cdot3-1\right)=2\cdot\left(-4\right)=-8\)

b) \(B=x^2y^2+xy+x^3+y^3=\left(x^2y^2+x^3\right)+\left(xy+y^3\right)\\ =x^2\left(y^2+x\right)+y\left(x+y^2\right)=\left(x+y^2\right)\left(x^2+y\right)\)

Với x=-1;y=3 ta có:

\(B=\left(-1+3^2\right)\left(-1^2+3\right)=8\cdot2=16\)

c) \(C=2x+xy^2-x^2y-2y=\left(2x-2y\right)+\left(xy^2-x^2y\right)\\ =2\left(x-y\right)+xy\left(y-x\right)=\left(x-y\right)\left(2-xy\right)\)

Với x=-1;y=3 ta có:

\(C=\left(-1-3\right)\left(2-\left(-1\right)\cdot3\right)=-4\cdot5=-20\)

d) phân tích tt

La. Lousia
Xem chi tiết
Hoàng Phúc
Xem chi tiết
Hoàng Phúc
26 tháng 7 2017 lúc 21:43

à thôi mk làm đc r  ,ko cần mn giải nữa 

Nguyễn Cảnh Kyf
Xem chi tiết
Bui Huyen
1 tháng 3 2020 lúc 20:42

\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)

\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)

\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)

Khách vãng lai đã xóa
Kimian Hajan Ruventaren
Xem chi tiết
Jimin
Xem chi tiết
Nguyen Quynh Huong
13 tháng 2 2018 lúc 9:19

b, Ta co: \(x^3+xy^2-x^2y-y^3+3\)

\(=\left(x^3-y^3\right)+\left(xy^2-x^2y\right)+3\)

\(=\left(x-y\right)^3+3xy\left(x-y\right)-xy\left(x-y\right)+3\)

= 3 ( vì x-y = 0)