khai triển của hàng đẳng thức : x^3 - 6x^2 - 5x + 30
khai triển của hằng đẳng thức (x-3)^2 là A.x^2-3^2 B.x^2+9 C.x^2-6x+9 D.x^2+6x+9
khai triển các hàng đẳng thức (2-3x)^3; (4x+1);(3-2x)^2; (x+1/2)^3
\(\left(2-3x\right)^3=8-36x+54x^2-27x^3\)
\(\left(3-2x\right)^2=9-12x+4x^2\)
Khai triển những hàng đăng thức sau
(X+3y)^2
(X-5xy)^2
(5+9y)^3
(6x-7xy)^3
\((x+3y)^2\\=x^2+2\cdot x\cdot3y+(3y)^2\\=x^2+6xy+9y^2\\---\\(x-5xy)^2\\=x^2-2\cdot x\cdot5xy+(5xy)^2\\=x^2-10x^2y+25x^2y^2\)
\((5+9y)^3\\=5^3+3\cdot5^2\cdot9y+3\cdot5\cdot(9y)^2+(9y)^3\\=125+675y+1215y^2+729y^3\\---\\(6x-7xy)^3\\=(6x)^3-3\cdot(6x)^2\cdot7xy+3\cdot6x\cdot(7xy)^2-(7xy)^3\\=216x^3-756x^3y+882x^3y^2-343x^3y^3\)
khai triển các hàng đẳng thức sau (1-3x)^3; (2-3x)^3;(x+1/2)^3;(4x+1)^2;(3-2x)^2
Khai triển hằng đẳng thức
1)-(y+6)^2
2)-(4-y)^2
3)-(2/3+x)^2
4)-(x-3/2)^2
5)-(2+3y)^2
6)-(2y-3)^2
7)-(5x+2y)^2
8)-(2x-3/2)^2
\(1,=-\left(y^2+12y+36\right)=-y^2-12y-36\)
\(2,=-\left(16-8y+y^2\right)=-16+8y-y^2\)
\(3,=-\left(\dfrac{4}{9}+\dfrac{4}{3}x+x^2\right)=-\dfrac{4}{9}-\dfrac{4}{3}x-x^2\)
\(4,=-\left(x^2-3x+\dfrac{9}{4}\right)=-x^2+3x-\dfrac{9}{4}\)
\(5,-\left(2+3y\right)^2=-\left(4+12y+9y^2\right)=-4-12y-9y^2\)
.... mấy ý còn lại bn tự lm nhé, tương tự thhooi
1) \(-\left(y+6\right)^2=-y^2-12y-36\)
2) \(-\left(4-y\right)^2=-y^2+8y-16\)
3) \(-\left(x+\dfrac{2}{3}\right)^2=-x^2-\dfrac{4}{3}x-\dfrac{4}{9}\)
4) \(-\left(x-\dfrac{3}{2}\right)^2=-x^2+3x-\dfrac{9}{4}\)
5) \(-\left(3y+2\right)^2=-9y^2-12y-4\)
6) \(-\left(2y-3\right)^2=-4y^2+12y-9\)
7) \(-\left(5x+2y\right)^2=-25x^2-20xy-4y^2\)
8) \(-\left(2x-\dfrac{3}{2}\right)^2=-4x^2+6x-\dfrac{9}{4}\)
dùng hằng đẳng thức để khai triển và thu gọn biểu thức sau a, (6x2 +1/3)2 b,(5x-4y)2
Bài 1. Khai triển các hằng đẳng thức sau:
a) (2x+1)3 b) (x-3)3
c) (-5x-y)3 h) (3y-2x2)3
Bài 2. Viết các biểu thức sau dưới dạng lập phương của một tổng hoặc lập phương của một hiệu.
a) x3+15x2+75x+125
b) 1-15y+75y2+125y3
c) 8x3+4x2y+3/2 xy2+8y3
d) -8x2+36x2-54+27
a) \(\left(2x+1\right)^3\)
\(=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1+1\)
\(=8x^3+12x^2+6x+1\)
b) \(\left(x-3\right)^3\)
\(=x^3-3.x^2.3+3.x.3^2-3^3\)
\(=x^3-9x^2+27x-27\)
Bài 2:
a: \(x^3+15x^2+75x+125=\left(x+5\right)^3\)
b: \(1-15y+75y^2-125y^3=\left(1-5y\right)^3\)
c: \(8x^3+4x^2y+\dfrac{3}{2}xy^2+8y^3=\left(2x+2y\right)^3\)
Dùng hằng đẳng thức để khai triển và thu gọn các biểu thức sau:
a) (3x+5)2
b) (6x2+\(\dfrac{1}{3}\))2
c) (5x-4y)2
d) (5x-3)(5x+3)
a) $(3x+5)^2\\=(3x)^2+2.3x.5+5^2\\=9x^2+30x+25$
b) $(6x+\dfrac{1}{3})^2\\=(6x)^2+2.6x.\dfrac{1}{3}+(\dfrac{1}{3})^2\\=36x^2+4x+\dfrac{1}{9}$
c) $(5x-4y)^2\\=(5x)^2-2.5x.4y+(4y)^2\\=25x^2-40xy+16y^2$
d) $(5x-3)(5x+3)\\=(5x)^2-(3)^2\\=25x^2-9$
khai triển các hằng đẳng thức sau
(5x+3yz)^2
(2x-3)^3
\(\left(5x+3yz\right)^2=25x^2+30xyz+9y^2z^2\\ \left(2x-3\right)^3=8x^3-36x^2+54x-27\)
\(\left(y^{2x}+3yz\right)^2=y^{4x}+6y^{2x+1}z+9y^2z^2\\ \left(x^2-6z\right)\left(x^2+6z\right)=x^4-36z^2\\ \left(y-5\right)\left(25+2y+y^2+3y\right)=\left(y-5\right)\left(y^2+5y+25\right)=y^3-125\)