Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Việt Hoàng 6A
Xem chi tiết
Anh Hà Đức
Xem chi tiết
Kiều Vũ Linh
27 tháng 4 2023 lúc 15:56

a) a > b

⇒ 2a > 2b (nhân hai vế với 2 > 0)

⇒ 2a - 3 > 2b - 3 (cộng hai vế với -3)

b) a < b

⇒ -3a > -3b (nhân hai vế với -3 < 0)

⇒ -3a + 2 > -3b + 2 (1) (cộng hai vế với 2)

5 > 2

⇒ -3a + 5 > -3a + 2 (2) (cộng hai vế với -3a)

Từ (1) và (2) ⇒ -3a + 5 > -3b + 2

Trần Thị Thanh Thủy
Xem chi tiết
nguyễn thì hải nhi
Xem chi tiết
hằng hồ thị hằng
Xem chi tiết
Akai Haruma
29 tháng 5 2021 lúc 23:01

Bài 1:

Vì $a\geq 1$ nên:

\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)

\(\geq 1+\sqrt{4}+0=3\)

Ta có đpcm

Dấu "=" xảy ra khi $a=1$

 

Akai Haruma
29 tháng 5 2021 lúc 23:04

Bài 2:
ĐKXĐ: x\geq -3$

Xét hàm:

\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)

\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)

Do đó $f(x)$ đồng biến trên TXĐ

\(\Rightarrow f(x)=0\) có nghiệm duy nhất

Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.

Hồ Châu Thái lam
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 6 2020 lúc 20:55

\(\Leftrightarrow a^2-2ab+b^2+a^2-2ac+c^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2\ge0\) (luôn đúng)

Vậy BĐT ban đầu được chứng minh

Dấu "=" xảy ra khi \(a=b=c\)

nguyễn minh duy
Xem chi tiết
Sophia
Xem chi tiết
Thầy Giáo Toán
30 tháng 9 2015 lúc 23:05

Phản chứng rằng tất cả đều đúng. Tích các bất đẳng thức lại cho ta 

\(a\left(1-a\right)b\left(1-b\right)c\left(1-c\right)d\left(1-d\right)>\frac{1}{2}\times\frac{2}{3}\times\frac{1}{8}\times\frac{3}{32}=\frac{1}{256}.\)

Mặt khác, ta có \(\left(a-\frac{1}{2}\right)^2\ge0\to a\left(1-a\right)\le\frac{1}{4}.\) Tương tự \(b\left(1-b\right),c\left(1-c\right),d\left(1-d\right)\le\frac{1}{4}\to\)
\(a\left(1-a\right)b\left(1-b\right)c\left(1-c\right)d\left(1-d\right)

Vũ Tiền Châu
Xem chi tiết
Nguyễn Thị Hồng Nhung
1 tháng 9 2017 lúc 18:23

Đây á

\(\left(a+b\right)^3=\left(a+b\right)^2.\left(a+b\right)=\left(a^2+2ab+b^2\right)\left(a+b\right)\)=\(a^3+3a^2b+3ab^2+b^3\)(đpcm)

tthnew
23 tháng 4 2020 lúc 21:05

Tất nhiên là SOS giải được, ye ye!

\(\sum a(a-b)(a-c) = \frac{3abc \sum (a-b)^2 + (a+b+c) \sum (a+b-c)^2 (a-b)^2}{2(a^2+b^2+c^2+ab+bc+ca)} \geqq 0\)