a)Cho a < b và c < d chứng minh a + c < b + d
b)a,b,c,d dương và a < b,c < d chứng minh ac < bd
1)Cho a < b và c < d chứng minh a + c < b + d
2)a,b,c,d dương và a < b,c < d chứng minh ac < bd
Cho a,b,c,d dương và a>b và c>d . Chứng minh ac>bd
a)Cho a < b và c < d chứng minh a + c < b + d
b)a,b,c,d dương và a < b, c < d chứng minh ac < bd
a)a<b
=>a+c<b+c(1)
c<d
=>b+c<b+d(2)
Từ 1 và 2 =>a+c<b+d
b)a<b
=>ac<bc(1)
c<d
=>bc<bd(2)
Từ 1 và 2 =>ac<bd
a/ Cho a<b và c<d chứng minh a+c<b+d
b/ ạ,b,c,d dương và a<b, c<d chứng minh ac<bd
a) a<b \(\Rightarrow\) a+c < b+c (1)
c<d\(\Rightarrow\) c+b < d+b (2)
Từ 1 và 2 \(\Rightarrow\)a+c < b+d (dpcm)
b) a<b \(\Rightarrow\) ac < bc ( vì c dương) (1)
c < d\(\Rightarrow\) bc < bd (vì b dương) (2)
Từ 1 và 2 \(\Rightarrow\) ac < bd (đpcm)
Bài 3. Cho đường tròn (O,R), đường kính AB. Từ điểm M bất kỳ trên đường tròn vẽ tiếp tuyến cắt 2 tiếp tuyến tại A, B lần lượt tại C và D. a) Chứng minh CD = CA + DB. b/ Chứng minh 𝐶𝑂𝐷 ̂ = 900 . c) Chứng minh AC . BD = R2 . d) Cho 𝑀𝐴𝐵 ̂ = 600 . CM : BDM đều, tính cạnh và S BDM theo R. Bài 4. Cho đường tròn (O,R), M ở ngoài đường tròn sao cho OM=2R. Vẽ tiếp tuyến MA của (O) với A là tiếp điểm. a) OAM là tam giác gì ? Tính cạnh và góc OMA ? b) Kẻ tiếp tuyến MB của (O). Chứng minh OM ⊥ AB. c) Vẽ cát tuyến MEF với đường tròn (O) (E nằm giữa M,F). Gọi I là trung điểm của EF. Chứng minh 5 điểm A, O, I, B, M cùng thuộc một đường tròn. Bài 5. Từ điểm A ở ngoài (O,R) với OA = 2R, vẽ 2 tiếp tuyến AB và AC. a) Chứng minh OA là trung trực của BC. b) Tính AB, AC theo R. c) Chứng minh ABC đều. Tính S ABC . d) Từ 1 điểm M thuộc 𝐵𝐶⏜ nhỏ kẻ tiếp tuyến thứ 3 cắt 2 tiếp tuyến kia tại P và Q. Chứng minh chu vi APQ có giá trị không đổi khi M thuộc 𝐵𝐶⏜ nhỏ.
Bài 3:
a) cho a≥1,b≥1. Chứng minh: a\(\sqrt{b-1}\)+b\(\sqrt{a-1}\) ≤ ab
b) ) Cho 4 số thực dương a, b, c, d. Chứng minh rằng: \(\sqrt{ac}+\sqrt{bd}\)≤\(\sqrt{\left(a+b\right)\left(c+d\right)}\)
a)Áp dụng AM-GM có:
\(a\sqrt{b-1}\le a.\dfrac{b-1+1}{2}=\dfrac{ab}{2}\)
\(b\sqrt{a-1}\le b.\dfrac{a-1+1}{2}=\dfrac{ab}{2}\)
\(\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\le\dfrac{ab}{2}+\dfrac{ab}{2}\)
\(\Leftrightarrow a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Dấu "=" xảy ra khi a=b=2
b)Áp dụng bđt bunhiacopxki có:
\(\left(\sqrt{ac}+\sqrt{bd}\right)^2=\left(\sqrt{a}.\sqrt{c}+\sqrt{b}.\sqrt{d}\right)^2\)\(\le\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right]\left[\left(\sqrt{c}\right)^2+\left(\sqrt{d}\right)^2\right]=\left(a+b\right)\left(c+d\right)\)
\(\Rightarrow\sqrt{ac}+\sqrt{bd}\le\sqrt{\left(a+b\right)\left(c+d\right)}\)
Dấu "=" xảy ra khi \(\dfrac{\sqrt{a}}{\sqrt{c}}=\dfrac{\sqrt{b}}{\sqrt{d}}\Leftrightarrow ad=bc\)
\(b,\) Áp dụng BĐT Bunhiacopski:
\(\left(a+b\right)\left(c+d\right)=\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right]\left[\left(\sqrt{c}\right)^2+\left(\sqrt{d}\right)^2\right]\\ \ge\left(\sqrt{ac}+\sqrt{bd}\right)^2\)
Dấu \("="\Leftrightarrow ad=bc\)
Cho \(a,b,c,d\in N\) thỏa mãn \(a>b>c>d\) và \(ac+bd=\left(b+d+a-c\right)\left(b+d-a+c\right)\).
Chứng minh \(ab+cd\) là hợp số
cho a,b,c là các số hữu tỉ dương chứng minh
a) ac/bd=a^2+c^2/b^2+d^2
b) (a+2c)(b+d)=(a+c)(b+2d)
Đề phải thêm là \(\frac{a}{b}=\frac{c}{d}\) nhé.
a)
b)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
(1)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)
Chúc bạn học tốt!
Cho 4 số nguyên dương \(a>b>c>d\) thỏa mãn \(ac+bd=\left(b+d+a-c\right)\left(b+d-a+c\right)\). Chứng minh rằng \(ab+cd\) không thể là số nguyên tố.
\(ac+bd=\left(b+d+a-c\right)\left(b+d-a+c\right)\)
\(\Leftrightarrow ac+bd=\left(b+d\right)^2-\left(a-c\right)^2\)
\(\Leftrightarrow ac+bd=b^2+d^2+2bd-a^2-c^2+2ac\)
\(\Leftrightarrow a^2-c^2=b^2+d^2+ac+bd\) (1)
Ta có
\(\left(ab+cd\right)\left(ad+bc\right)=a^2bd+ab^2c+acd^2+bc^2d=\)
\(=bd\left(a^2+c^2\right)+ac\left(b^2+d^2\right)\) (2)
Thay (1) vào (2)
\(\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2+ac+bd\right)+ac\left(b^2+d^2\right)\)
\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2\right)+bd\left(ac+bd\right)+ac\left(b^2+d^2\right)\)
\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(b^2+d^2\right)\left(ac+bd\right)+bd\left(ac+bd\right)\)
\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(ac+bd\right)\left(b^2+d^2+bd\right)\) (3)
Do \(a>b>c>d\)
\(\Rightarrow\left(a-d\right)\left(b-c\right)>0\Leftrightarrow ab-ac-bd+cd>0\)
\(\Leftrightarrow ab+cd>ac+bd\) (4)
Và
\(\left(a-b\right)\left(c-d\right)>0\Leftrightarrow ac-ad-bc+bd>0\)
\(\Leftrightarrow ac+bd>ad+bc\) (5)
Từ (4) và (5) \(\Rightarrow ab+cd>ad+bc\)
Ta có
(3)\(\Leftrightarrow b^2+d^2+bd=\dfrac{\left(ab+cd\right)\left(ad+bc\right)}{\left(ac+bd\right)}\) (6)
Vế trái là số nguyên => vế phải cũng phải là số nguyên
Giả sử ab+cd là số nguyên tố mà \(ab+cd>ac+bd\)
\(\Rightarrow UC\left(ab+cd;ac+bd\right)=1\) => ab+cd không chia hết cho ac+bd
=> để vế phải của (6) là số nguyên \(\Rightarrow ad+bc⋮ac+bd\Rightarrow ad+bc>ac+bd\) Mâu thuẫn với (5) nên giả sử sai => ab+cd không thể là số nguyên tố
mình là người mới ,cho mình hỏi làm sao để kiếm xu đổi quà