Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Có mấy bài bất đẳng thức, bạn nào làm được câu nào thì làm nhé
a) Cho \(a,b,c,d>0\)
Chứng minh rằng : \(ab+dc+cd+ad\le\frac{\left(a+b+c+d\right)^4}{4}\)
b) Cho \(x,y\in R^+\)thỏa mãn \(x+y=2\)
Chứng minh : \(x^2y^2\left(x^2+y^2\right)\le2\)
c) Cho \(a,b,c\in R^+\)tùy ý
Chứng minh rằng : \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
1. Cho a,b,c,d là các số dương. Chứng minh rằng: \(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\)
2. Cho (x;y;z) và (a;b;c) là các số dương. Chứng minh rằng: \(\sqrt[3]{abc}+\sqrt[3]{xyz}\le\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\)
3. Cho \(c>0\) và \(a,b\ge c\). Chứng minh rằng: \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Cho a,b,c,d >0. Chứng minh rằng:
\(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\)
Cho a+b+c+d=1. Chứng minh: \(\left(a+c\right)\left(b+d\right)+2\left(ca+bd\right)\le\frac{1}{2}\)
cho a,b,c,d la cac so thuc thoa ma dang thuc a+b+c+d=0.chung minh rang:
\(a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)
Cho a, b, c, d > 0 với abcd=1. Chứng minh rằng: \(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge10\)