Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, là số hữu tỉ thỏa mãn: \(\left(a^2+b^2-2\right).\left(a+b\right)^2+\left(1-ab\right)^2=-4ab\). CM: \(\sqrt{1+ab}\) là số hữu tỉ
1.Giải hệ phương trình sau: \(\left\{{}\begin{matrix}\sqrt{x-2018}-\sqrt{y-2019}=1\\\sqrt{y-2018}-\sqrt{x-2019}=1\end{matrix}\right.\)
2. Cho a,b là các số hữu tỉ thỏa mãn \(\left(a^2+b^2-2\right)\left(a+b\right)^2+\left(1-ab\right)^2=-4ab\)
CMR: \(\sqrt{1+ab}\) là một số hữu tỉ
Help me!!!!Please!!!!
Cho \(a,b,c,d\in N\) thỏa mãn \(a>b>c>d\) và \(ac+bd=\left(b+d+a-c\right)\left(b+d-a+c\right)\).
Chứng minh \(ab+cd\) là hợp số
Cho các số dương a, b, c thỏa mãn ab+bc+ca=1.
CMR: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3+\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\frac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\frac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
Cho a,b,c>0 thỏa mãn : \(ab+bc+ca=0\)
C/m: \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3+\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\dfrac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\dfrac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
Câu 1: Giải phương trình :
\(\left(2\sqrt{x+2}+\sqrt{4x+1}\right)\left(2x+3+\sqrt{4x^2-9x+2}\right)=7\)
Câu 2: Tìm \(x;y\in Z\) biết \(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)
Câu 3: Cho \(a,b,c\) là các số hữu tỉ thỏa mãn \(\frac{1}{a+bc}+\frac{1}{b+ca}=\frac{1}{a+b}\). Chứng minh \(\frac{c-3}{c+1}\) là bình phương của một số hữu tỉ
Câu 4: Cho 3 số \(a,b,c\) thỏa mãn \(0\le a\le b\le c\le1\).
Tìm \(maxB=\left(a+b+c+3\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)